• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (12): 73-82.doi: 10.3901/JME.2025.12.073

• 材料科学与工程 • 上一篇    

扫码分享

基于混合机器学习模型的两级加载下金属材料的剩余疲劳寿命预测方法

徐自力1,2, 高京京2, 覃曼青1,3, 何孟夫1,3   

  1. 1. 核电安全监控技术与装备国家重点实验室 深圳 518172;
    2. 西安交通大学复杂服役环境重大装备结构强度与寿命全国重点实验室 西安 710049;
    3. 中广核工程有限公司 深圳 518124
  • 收稿日期:2024-10-08 修回日期:2025-02-15 发布日期:2025-08-07
  • 作者简介:徐自力(通信作者),男,1967年出生,博士,教授,博士研究生导师。主要研究方向为涡轮机械状态监测、流固耦合、转子动力学、疲劳寿命预测。E-mail:zlxu@mail.xjtu.edu.cn
  • 基金资助:
    国家重点实验室基金资助项目(6142704190404)。

Hybrid Machine Learning Method for Remaining Fatigue Life Prediction of the Metallic Materials under Two-step Loading

XU Zili1,2, GAO Jingjing2, QIN Manqing1,3, HE Mengfu1,3   

  1. 1. State Key Laboratory of Nuclear Power Safety Monitoring Technology and Equipment, Shenzhen 518172;
    2. State Key Laboratory for Strength and Mechanical Structures, Xi'an Jiaotong Unversity, Xi'an 710049;
    3. China Nuclear Power Engineering Co., Ltd., Shenzhen 518124
  • Received:2024-10-08 Revised:2025-02-15 Published:2025-08-07

摘要: 剩余疲劳寿命预测对于保障工程结构的安全可靠至关重要。特别是,当结构物遭受变幅值载荷时,由于疲劳损伤累积的复杂性性以及数据中固有的噪声和不确定性,使得剩余疲劳寿命预测具有挑战性。为了解决这个问题,建立混合机器学习模型GA-BP-GPR方法,该方法使用GA-BP方法(遗传算法-反向传播神经网络)映射输入和剩余寿命之间的复杂关系结合GPR (高斯过程回归)获取相应的不确定性,用于估计两级加载下金属材料的剩余疲劳寿命。在包含12种金属材料、总共328个样本的数据集上对GA-BP-GPR方法进行全面评估。GA-BP-GPR方法对测试集所有预测结果都落在3倍分散带内;与5种机器学习方法和2种传统疲劳预测方法对比结果表明所提方法对两步载荷下的剩余寿命预测具有较高的准确性和可靠性。此外,所提方法对没有参与训练的Al-2024-T42的预测结果都在2倍分散带内,表明所提方法对新材料剩余疲劳寿命预测的泛化能力。

关键词: 剩余疲劳寿命, 疲劳寿命预测, 遗传算法, 高斯过程回归, 机器学习

Abstract: Remaining fatigue life prediction is crucial for the safety and reliability of engineering structures. When the structure is subjected to multi-step loading, it becomes challenging to predict the remaining fatigue life due to the complexity of fatigue damage accumulation and inherent noise and uncertainty in the data. To address this problem, a hybrid machine learning method, the GA-BP-GPR method, is established, which uses the GA-BP method (genetic algorithm-backpropagation neural network) to map the complex relationship between input features and remaining fatigue life and combines with GPR (Gaussian process regression) to obtain the corresponding uncertainty, for estimating the remaining fatigue life of metal materials under two-step loading. The GA-BP-GPR method is comprehensively evaluated on a dataset of 328 samples from 12 metal materials. The predicted results of the test set using the proposed method fall within the ±3 scatter band. In comparison with the five machine learning methods and two traditional methods, the results indicate that the proposed method can achieve higher accuracy and reliability in predicting remaining fatigue life under two-step loading. In addition, the predicted results of the proposed method for Al-2024-T42 fall within the ±2 scatter band, indicating the proposed method has generalization ability for remaining fatigue life prediction under two-step loading for new materials.

Key words: remaining fatigue life, fatigue life prediction, genetic algorithm, Gaussian process regression, machine learning

中图分类号: