• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (19): 63-77.doi: 10.3901/JME.2025.19.063

• 机器人及机构学 • 上一篇    

扫码分享

新型多驱动模式并联机器人创新设计与建模分析

梁栋1,2, 崔满军1, 宋轶民3, 石浩昊1, 张珺鹏1   

  1. 1. 天津工业大学机械工程学院 天津 300387;
    2. 天津市现代机电装备技术重点实验室 天津 300387;
    3. 天津大学机构理论与装备设计教育部重点实验室 天津 300350
  • 收稿日期:2024-10-29 修回日期:2025-04-23 发布日期:2025-11-24
  • 作者简介:梁栋(通信作者),男,1985年出生,博士,副教授,博士研究生导师。主要研究方向为机构学与机器人学、多体系统动力学及控制。E-mail:dongliang@tiangong.edu.cn
    崔满军,男,2000年生,硕士研究生。主要研究方向为机器人机构运动学与动力学。E-mail:2230050689@tiangong.edu.cn
    宋轶民,男,1971年出生,博士,教授,博士研究生导师。主要研究方向为机器人机构学、机械动力学与机械传动。E-mail:ymsong@tju.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(52175243, 52275027)。

Innovative Design, Modeling Analysis of a Novel Parallel Robot with Multiple Actuation Modes

LIANG Dong1,2, CUI Manjun1, SONG Yimin3, SHI Haohao1, ZHANG Junpeng1   

  1. 1. School of Mechanical Engineering, Tiangong University, Tianjin 300387;
    2. Tianjin Key Laboratory of Advanced Mechatronics Equipment Technology, Tianjin 300387;
    3. Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin 300350
  • Received:2024-10-29 Revised:2025-04-23 Published:2025-11-24

摘要: 研究一种可实现多驱动模式的三平动并联机器人的创新设计、系统完备动力学建模及动态特性分析。首先,以传统三平动并联机构作为基础构型,通过引入辅助支链的方式,构造平行四边形分支,提出一种新型多驱动模式并联机器人,并进行概念设计和自由度分析,该类机器人可改变驱动关节,实现8种不同的驱动模式,从而适应多任务作业。其次,借助环路矢量法推导出机器人多驱动模式下位置逆/正解模型,并进一步对其进行速度、加速度以及工作空间分析。在此基础上,应用凯恩方程,建立多驱动模式下的系统完备动力学模型。之后,基于Matlab/Simscape构建多体物理仿真模型,结合轨迹规划,对机器人进行多驱动模式下刚体动力学仿真试验并与数值计算结果进行对比,验证系统动力学模型的正确性。最后,基于系统惯性矩阵,定义动态可操作度椭球指标,评估机器人在不同驱动模式下的操作空间动态性能,为驱动模式选择及动态性能优化奠定基础。研究结果可为此类新型多驱动模式并联机器人的设计及其建模方法提供参考。

关键词: 并联机器人, 多驱动模式, 凯恩方程, 多体仿真试验, 动态特性

Abstract: The innovative design, complete dynamic model, and dynamic characteristic analysis of a novel three degree of freedom parallel robot that can achieve multiple actuation modes are systematically investigated. Firstly, based on the traditional three degree of freedom parallel mechanism, a new type of parallel robot with multiple actuation modes is proposed by adding auxiliary chains to construct parallelogram branches, and conceptual design and degree of freedom analysis are carried out. This type of robot can change the drive joints and achieve eight different actuation modes, thus adapting to multi-task operations. Secondly, the inverse/forward position models of the robot under different actuation modes are derived using the closed-loop vector method, and the velocity, acceleration, and workspace are analysed. On this basis, the Kane formulation is applied to establish a complete dynamic model of system under multiple actuation modes. Afterwards, a multi-body physical simulation model is constructed based on Matlab/Simscape, and combined with trajectory planning, rigid body dynamics simulation experiments are conducted on the robot under multiple actuation modes and compared with numerical calculation results to verify the correctness of the dynamic model of system. Finally, based on the inertia matrix of system, a dynamic operability ellipsoid index is defined to evaluate the dynamic performance of the robot under different actuation modes, laying foundation for actuation mode selection and dynamic performance optimization. The research results can provide reference for the design and modelling methods of such novel parallel robots with multiple actuation modes.

Key words: parallel robots, multi actuation modes, Kane equation, multi-body simulation test, dynamic characteristic

中图分类号: