• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (13): 327-359.doi: 10.3901/JME.2025.13.327

• 制造工艺与装备 • 上一篇    

扫码分享

基于磨削机理的表面形貌和粗糙度预测模型研究进展

彭飞1, 张彦彬1, 崔歆1, 刘明政1, 梁晓亮2, 徐培明3, 周宗明4, 李长河1   

  1. 1. 青岛理工大学教育部工业流体节能与污染控制重点实验室 青岛 266520;
    2. 山东大学机械工程学院 济南 250100;
    3. 泰山体育产业集团有限公司 山东 泰安 253600;
    4. 汉能(青岛)润滑科技有限公司 青岛 266200
  • 收稿日期:2024-07-22 修回日期:2025-01-11 发布日期:2025-08-09
  • 作者简介:彭飞,男,2000年出生。主要研究方向为智能与洁净精密制造。E-mail:pengfei13793123209@163.com;张彦彬(通信作者),男,1990年出生,博士,教授,博士研究生导师。主要研究方向为智能与洁净精密制造。E-mail:zhangyanbin1_qdlg@163.com
  • 基金资助:
    国家自然科学基金(52475469,52105457,52375447)、山东省泰山学者青年专家计划(tsqn202211179)和山东省青年科技人才托举工程(SDAST 2021qt12)资助项目。

Research Progress in Modelling of Surface Topography and Roughness Based on Grinding Mechanism

PENG Fei1, ZHANG Yanbin1, CUI Xin1, LIU Mingzheng1, LIANG Xiaoliang2, XU Peiming3, ZHOU Zongming4, LI Changhe1   

  1. 1. Key Lab of Industrial Fluid Energy Conservation and Pollution Control of Ministry of Education, Qingdao University of Technology, Qingdao 266520;
    2. College of Mechanical Engineering, Shandong University, Jinan 250100;
    3. Taishan Sports Industry Group Co., Ltd., Taian 253600;
    4. Hanergy (Qingdao) Lubrication Technology Co., Ltd., Qingdao 266200
  • Received:2024-07-22 Revised:2025-01-11 Published:2025-08-09

摘要: 工件表面形貌和粗糙度是磨削加工的重要衡量指标,实现其精准预测对于精密制造的智能化转型升级尤为重要。然而,磨削工件表面创成是一个具有随机性的复杂物理过程,目前基于物理机制的模型预测精度亟待提升。基于此,通过考虑磨削过程的几何学和运动学,详细综述了工件表面形貌的预测模型与方法。首先,综述了包括随机平面方法在内的6种磨粒几何建模方法,探索了磨粒表征参数对拟真性的影响规律。其次,总结磨粒在砂轮表面位姿随机分布的数学模型,探索模型参数对磨粒的突出高度等参数的影响规律,并关联总结磨粒可控排布的砂轮的制备与修整方法。随后,分析了平面磨削、超声辅助磨削等不同磨削工艺的磨粒运动学模型,讨论在不同接触形式下磨粒与工件表面之间的相互作用机理,结合动态有效磨粒模型归纳了表面粗糙度的预测模型。最后,统计分析现有粗糙度模型预测误差,误差范围4.47%~37.65%、平均误差11.59%。为磨削表面形貌和粗糙度的精准预测提供新思路,能够为磨削机理与数据分析相融合的智能预测方法提供借鉴。

关键词: 磨削, 砂轮建模, 运动轨迹, 接触模型, 工件形貌, 表面粗糙度预测

Abstract: The surface topography and roughness of workpieces are critical metrics in grinding processes, with accurate prediction considered essential for advancing intelligent manufacturing. The generation of workpiece surfaces during grinding is recognized as a complex, stochastic process, and the accuracy of existing physics-based predictive models is deemed insufficient. A comprehensive review of predictive models and methodologies for workpiece surface topography is presented, with emphasis placed on geometric and kinematic aspects of grinding. Six geometric modeling approaches for abrasive grains, including the random plane method, are summarized, and the influence of abrasive grain parameters on model fidelity is examined. Mathematical models for the random distribution of abrasive grain positions and orientations on grinding wheel surfaces are reviewed, and the effects of model parameters on features such as protrusion height are analyzed. Methods for the fabrication and conditioning of grinding wheels with controlled abrasive grain arrangements are also discussed. Kinematic models of abrasive grains for various grinding processes, including plane and ultrasonic-assisted grinding, are analyzed. The interaction mechanisms between abrasive grains and the workpiece surface under different conditions are explored, and predictive models for surface roughness are generalized based on dynamic abrasive grain models. Finally, prediction errors of existing roughness models are statistically analyzed, with error ranges identified from 4.47% to 37.65%, and an average error of 11.59% determined. New perspectives for improving the prediction of grinding surface topography and roughness are proposed, offering references for the development of intelligent predictive methods integrating grinding mechanisms with data analysis.

Key words: grinding, wheel modelling, motion trajectory, contact model, workpiece morphology, surface roughness prediction

中图分类号: