• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (13): 120-141.doi: 10.3901/JME.2025.13.120

• 特邀专栏:价值链协同赋能的复杂制造系统:趋势、技术与挑战 • 上一篇    

扫码分享

价值链协同的人机联合认知驱动产品设计研究综述

洪兆溪1,2, 冯毅雄1,2, 计若松3, 宋秀菊2, 易树平4, 李志武5, 谭建荣1,2   

  1. 1. 浙江大学宁波科创中心 宁波 315100;
    2. 浙江大学流体动力基础件与机电系统全国重点实验室 杭州 310027;
    3. 宾夕法尼亚州立大学机械工程系 斯泰特科利奇 16802 美国;
    4. 重庆大学机械与运载工程学院 重庆 400044;
    5. 西安电子科技大学机电工程学院 西安 710071
  • 收稿日期:2024-06-30 修回日期:2025-05-08 发布日期:2025-08-09
  • 作者简介:洪兆溪,女,1990年出生,博士,助理研究员。主要研究方向为认知智能与产品大数据优化决策。E-mail:hzhx@zju.edu.cn;冯毅雄(通信作者),男,1975 年出生,博士,教授,博士研究生导师。主要研究方向为现代产品设计理论与方法。E-mail:fyxtv@zju.edu.cn;计若松,男,1999年出生,博士生。主要研究方向为机械产品设计与不确定性优化决策。E-mail:rxj5277@psu.edu;宋秀菊,女,1989 年出生,博士,研究员,博士研究生导师。主要研究方向为材料结构功能一体化设计。E-mail:songxiuju@zju.edu.cn;易树平,男,1960年出生,博士,教授,博士研究生导师。主要研究方向为数字化背景下的人因工程、制造系统工程、工业工程理论与技术。E-mail:yshuping@cqu.edu.cn;李志武,男,1967年出生,博士,教授,博士研究生导师。主要研究方向为离散制造事件监督控制理论、复杂制造系统建模分析、Petri网理论及应用E-mail:zhiwli@xidian.edu.cn;谭建荣,男,1954 年出生,博士,教授,博士研究生导师,中国工程院院士。主要研究方向为CAX方法学、工程图学、企业信息化。E-mail:0620486@zju.edu.cn
  • 基金资助:
    浙江省“尖兵”“领雁”攻关计划资助项目(2024C01029, 2024C01207, 2025C01088)。

Research Overview of Product Design Driven by Man-Machine Joint Cognition with Value Chain Collaboration

HONG Zhaoxi1,2, FENG Yixiong1,2, JI Ruosong3, SONG Xiuju2, YI Shuping4, LI Zhiwu5, TAN Jianrong1,2   

  1. 1. Ningbo Innovation Center, Zhejiang University, Ningbo 315100;
    2. State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027;
    3. Department of Mechanical Engineering, The Pennsylvania State University, State College 16802 USA;
    4. College of Mechanical and Vehicle Engineering, Chongqing University, Chongqing 400044;
    5. School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071
  • Received:2024-06-30 Revised:2025-05-08 Published:2025-08-09

摘要: 任何科技成果要转变为制造业价值链协同中有竞争力的商品,设计都起着关键性的作用。以设计理论为指导,在产品研发中同时注入计算机的强大计算能力和人类的独特认知能力,增强设计过程的知识自动化表达与处理,可以大幅度提高设计问题的求解效率,为产品设计提供新的动力源泉。提炼了制造业价值链协同下人机联合认知驱动产品设计的重要意义,揭示了其中的智能因素分类与内在机理流程,对产品设计中的人机联合认知与人工智能算法做了系统梳理。以虚拟现实、认知计算、脑机接口和可信人工智能为代表,介绍人机联合认知驱动设计的关键技术。从市场情景分析、用户偏好挖掘、设计意图理解、设计方案求解、设计行为决策等重要设计环节详述了人机联合认知驱动产品设计的研究进展,总结了当前设计中人类智能和机器智能“形合而神不合”的具体表现,指出产品设计由人机联合认知驱动向人机物共融认知驱动的必然发展趋势。

关键词: 价值链协同, 人机联合认知, 产品设计, 市场情景分析, 设计意图理解, 设计行为决策

Abstract: Product design plays an important role in transforming every scientific and technological achievement into a competitive commodity in the value chain collaboration of manufacturing industry. Under the guidance of design theories, the powerful computing power of computer and the unique cognitive ability of human are injected into product development at the same time, and the automatic expression and processing of design knowledge are enhanced, which can greatly improve the solving efficiency of design problems and provide new impetus for product design. The significance of product design driven by human-machine joint cognition is refined with the value chain collaboration of manufacturing industry, with the classification of intelligent factors and the internal mechanism process being revealed. The human-machine joint cognition and artificial intelligence algorithms in product design are systematically sorted out. Taking virtual reality, cognitive computing, brain-computer interface and trusted artificial intelligence as representatives, this paper introduces the key technologies of product design driven by human-machine joint cognition. From market scenario analysis, user preference mining, design intention understanding, design solution solving, and design behavior decision-making, the research progress of product design driven by human-machine joint cognition with the value chain collaboration of manufacturing industry is detailed, and the specific deficiencies of human intelligence and machine intelligence in current product design are summarized. It also points out the inevitable development trend of product design from man-machine joint cognition to man-machine-thing joint cognition.

Key words: value chain collaboration, man-machine joint cognition, product design, market scenario analysis, design intent understanding, design behavior decision-making

中图分类号: