• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (7): 98-108.doi: 10.3901/JME.2025.07.098

• 特邀专栏:先进纤维增强复合材料加工 • 上一篇    下一篇

扫码分享

虑及基体弹塑性特性的CF/PEEK切削理论研究

胡晓杭1,2, 王福吉1,2, 贾振元1,2, 鞠鹏程1,2, 魏钢1,2, 付饶1,2   

  1. 1. 大连理工大学高性能精密制造全国重点实验室 大连 116024;
    2. 大连理工大学辽宁省先进复合材料高性能制造重点实验室 大连 116024
  • 收稿日期:2024-07-15 修回日期:2024-11-19 发布日期:2025-05-12
  • 作者简介:胡晓杭,男,1999年出生,博士研究生。主要研究方向为复合加工理论与工艺。E-mail:hxiaoh@mail.dlut.edu.cn
    付饶(通信作者),男,1988年出生,博士,教授,博士研究生导师。主要研究方向为高性能复合材料控形控性制造。E-mail:r.fu@dlut.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(52090053、52105432、52130506);第二十七届中国科协年会学术论文。

Theoretical Study on the Cutting of CF/PEEK Considering the Elasto-plastic Properties of the Matrix

HU Xiaohang1,2, WANG Fuji1,2, JIA Zhenyuan1,2, JU Pengcheng1,2, WEI Gang1,2, FU Rao1,2   

  1. 1. State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian 116024;
    2. Key Laboratory of High-Performance Manufacturing for Advanced Composite Materials, Dalian University of Technology, Dalian 116024
  • Received:2024-07-15 Revised:2024-11-19 Published:2025-05-12

摘要: 碳纤维增强热塑性复合材料(Carbon fiber reinforced thermoplastic composites, CFRTP)不仅轻质高强且高韧耐冲击,受到了高端装备制造行业的广泛关注。相比传统的碳纤维增强热固性复合材料(Carbon fiber-reinforced polymer, CFRP),CFRTP的基体塑性更强,加工时纤维所受约束相对较弱,易发生较大变形,导致加工损伤易发多发。此外,热塑性基体的高塑性使得CFRTP加工过程中的材料去除行为和损伤形式与CFRP存在明显差异。可见塑性是CFRTP的一个重要特征且不可忽略。为了准确描述热塑性基体的塑性对纤维约束及CFRTP切削过程的影响,本文建立了虑及基体弹塑性特性的CFRTP切削力学模型,采用“弹簧-圣维南体”串联模型来表征脆性纤维与高韧热塑性基体之间的约束关系,并基于地基梁理论和最小势能原理,量化分析了基体的弹塑性特性对纤维所受约束的影响。最后以典型的CFRTP-碳纤维/聚醚醚酮(CF/PEEK)为对象,理论与实验分析了切削深度对宏观切削力和面下损伤的影响。结果表明,该模型能够较好地预测CF/PEEK的宏观切削力和面下损伤。在分析范围内,模型对主切削力和推力的平均预测误差分别为11.50%和7.32%;对面下损伤的平均预测误差为2.88%。与未考虑基体弹塑性特性的算法相比,考虑基体弹塑性特性的模型所预测的宏观切削力更接近实验结果。

关键词: CF/PEEK, 纤维变形, 弹塑性, 切削机理, 面下损伤

Abstract: Carbon fiber reinforced thermoplastic composites (CFRTP) have garnered significant attention in the high-end equipment manufacturing industry due to their lightweight, high strength, and excellent impact resistance. Compared to traditional carbon fiber reinforced thermoset composites (CFRP), CFRTP have a more plastic matrix, which results in relatively weaker constraints on the fibers during machining. This can lead to greater deformation and increased susceptibility to machining damage. Additionally, the high plasticity of the thermoplastic matrix causes significant differences in material removal behavior and damage form between CFRTP and CFRP during machining. Thus, plasticity is an important and non-negligible characteristic of CFRTP. To accurately describe the effect of the thermoplastic matrix's plasticity on fiber constraint and the cutting process of CFRTP, a cutting mechanics model that considers the elasto-plastic characteristics of the matrix is established. The constraint relationship between the brittle fibers and the high-toughness thermoplastic matrix is characterized using a "spring-St.Venant body" series model. Based on the foundation beam theory and the principle of minimum potential energy, the influence of the matrix's elasto-plastic characteristics on the fiber constraint has been quantitatively analyzed. Finally, taking the typical CFRTP-carbon fiber/polyetheretherketone (CF/PEEK) as the object, the impact of cutting depth on macroscopic cutting forces and subsurface damage is theoretically and experimentally analyzed. The results indicate that the model can accurately predict the macroscopic cutting forces and subsurface damage of CF/PEEK. Within the analyzed range, the model's average prediction errors for cutting force and thrust force are 11.50% and 7.32%, respectively, while the average prediction error for subsurface damage is 2.88%. Compared to algorithm that do not consider the elasto-plastic characteristics of the matrix, the model incorporating the characteristic predicts macroscopic cutting forces more accurately, aligning closer with experimental results.

Key words: CF/PEEK, fiber deformation, elasto-plastic, cutting mechanism, subsurface damage

中图分类号: