[1] MELAN E. Zur Plastizität des räumlichen Kontinuums[J]. Ingenieur-Archiv,1938,9(2):116-126. MELAN E. On the plasticity of the spatial continuum[J]. Engineering Archive,1938,9(2):116-126. [2] KOITER W. General theorems for elastic plastic solids[J]. Progress in Solid Mechanics,1960,6:167-221. [3] WEICHERT D. On the influence of geometrical nonlinearities on the shakedown of elastic-plastic structures[J]. International Journal of Plasticity,1986,2(2):135-148. [4] ZARKA J. Direct analysis of elastic-plastic structures with 'overlay' materials during cyclic loading[J]. International Journal for Numerical Methods in Engineering,1980,15(2):225-235. [5] KLEBANOV J. BOYLE J. Shakedown of creeping structures[J]. International Journal of Solids and Structures,1998,35(23):3121-3133. [6] CORRADI L,MAIER G. Dynamic non-shakedown theorem for elastic perfectly-plastic continua[J]. Journal of the Mechanics and Physics of Solids,1974,22(5):401-413. [7] BORINO G,POLIZZOTTO C. Dynamic shakedown of structures with variable appended masses and subjected to repeated excitations[J]. International Journal of Plasticity,1996,12(2):215-228. [8] CHRISTIANSEN E,ANDERSEN K. Computation of collapse states with von mises type yield condition[J]. International Journal for Numerical Methods in Engineering,1999,46(8):1185-1202. [9] HACHEMI A,WEICHERT D. Numerical shakedown analysis of damaged structures[J]. Computer Methods in Applied Mechanics and Engineering,1998,160(1-2):57-70. [10] SIMON J. Limit states of structures in n-dimensional loading spaces with limited kinematical hardening[J]. Computers and Structures,2015,147:4-13. [11] PONTER A,CARTER K. Limit state solutions,based upon linear elastic solutions with a spatially varying elastic modulus[J]. Computer Methods in Applied Mechanics and Engineering,1997,140(3-4):237-258. [12] MACKENZIE D,SHI J,BOYLE J. Finite element modelling for limit analysis by the elastic compensation method[J]. Computers and Structures,1994,51(8):403-410. [13] CHEN Haofeng. Lower and upper bound shakedown analysis of structures with temperature-dependent yield stress[J]. Journal of Pressure Vessel Technology,Transactions of the ASME,2010,132(1):0112021-0112028. [14] SPILIOPOULOS K,PANAGIOTOU K. A residual stress decomposition based method for the shakedown analysis of structures[J]. Computer Methods in Applied Mechanics and Engineering,2014,276:410-430. [15] PENG Heng,LIU Yinghua,CHEN Haofeng. A numerical formulation and algorithm for limit and shakedown analysis of large-scale elastoplastic structures[J]. Computational Mechanics,2019,63(1):1-22. [16] 彭恒,刘应华. 应力补偿法在压力容器安定分析中的应用[C]//压力容器先进技术——第十届全国压力容器学术会议论文集(上). 2021:481-496. PENG Heng,LIU Yinghua. Application of stress compensation method in shakedown analysis of pressure vessels[C]//Advanced Technology of Pressure Vessels-Proceedings of the 10th National Conference on Pressure Vessels (PART I). 2021:481-496. [17] LI Kai,CHENG Gengdong,WANG Yu,et al. A novel primal-dual eigenstress-driven method for shakedown analysis of structures[J]. International Journal for Numerical Methods in Engineering,2021,122(1):2770-2801. [18] 钱令希,王志必. 结构极限分析和安定分析-温度参数法[J]. 计算结构力学及其应用,1989,6(1):113-121. QIAN Lingxi,WANG Zhibi. Limit analysis and shakedown analysis-temperature parameter method[J]. Computational Structural Mechanics and Applications,1989,6(1):113-121. [19] GroB-Weege J. On the numerical assessment of the safety factor of elastic-plastic structures under variable loading[J]. International Journal of Mechanical Sciences,1996,39(4):417-433. [20] HEITZER M,POP G,STAAT M. Basis reduction for the shakedown problem for bounded kinematic hardening material[J]. Journal of Global Optimization,2000,17(1-4):185-200. [21] LIU Yinghua,ZHANG Xiaofeng,CEN Zhangzhi. Lower bound shakedown analysis by the symmetric Galerkin boundary element method[J]. International Journal of Plasticity,2005,21(1):21-42. [22] RI J,HONG H. A basis reduction method using proper orthogonal decomposition for lower bound shakedown analysis of composite material[J]. Archive of Applied Mechanics,2018,88(10):1843-1857. [23] KÖNIG J. Shakedown of elastic-plastic structures[M]. Amsterdam:Elsevier,1987. [24] PENG Heng,LIU Yinghua,CHEN Haofeng,et al. Shakedown analysis of engineering structures under multiple variable mechanical and thermal loads using the stress compensation method[J]. International Journal of Mechanical Sciences,2018,140:361-375. [25] LI K,Cheng G. A nested algorithm of truss topology optimization for maximum plastic shakedown loading capacity[J]. J. Comput. Des. Eng.,2022,9:670-688. [26] LI K,Cheng G. Structural topology optimization of elastoplastic continuum under shakedown theory[J]. Int. J. Numer. Methods Eng.,2022,123:4459-4482. |