[1] WANG Ruoqin,ZHOU Jinping,PAN Weichao,et al. Research progress of new graphene materials[J]. New Chemical Materials,2020,48(S1):11-13. [2] HU K,KULKARNI D D,CHOI I,et al. Graphene-polymer nanocomposites for structural and functional applications[J]. Progress in Polymer Science,2014,39(11):1934-1972. [3] GEIM A K,NOVOSELOV K S. The rise of graphene[J]. Nature Materials,2007,6:183-191. [4] 蔺娜,林志燃,陈瀚宁,等. 激光诱导制造石墨烯研究现状与发展趋势[J]. 机械工程学报,2022,58(3):235-250. Lin Na,Lin Zhiran,Chen Hanning,et al. Research status and development trend of laser-induced graphene fabrication[J]. Journal of Mechanical Engineering,2022,58(3):235-250. [5] 刘茜. 氧化石墨烯/酚醛环氧复合材料的界面改性与热性能研究[D]. 西安:西安理工大学,2018. LIU Xi. Interfacial modification and thermal properties of graphene oxide/phenoli epoxy composites[D]. Xi'an:Xi'an University of technology,2018. [6] GEIM A K. Graphene:Status and prospects[J]. Science,2009,324:1530-1534. [7] XIE X L,MAI Y W,ZHOU X P. Dispersion and alignment of carbon nanotubes in polymer matrix:A review[J]. Polymeric Materials Science & Engineering,2005,49(4):89-112. [8] 王雅珍,庆迎博,孟爽,等. 石墨烯制备及应用研究进展[J]. 化学世界,2019,60(7):385-394. WANG Yazhen,QING Yingbo,MENG Shuang,et al. Progress in preparation and application of graphene[J]. Chemical World,2019,60(7):385-394. [9] 丁智平,黄达勇,荣继刚,等. 注塑成型短玻纤增强复合材料各向异性弹性常数预测方法[J]. 机械工程学报,2017,53(24):126-134. DING Zhiping,HUANG Dayong,RONG Jigang,et al. Prediction method for anisotropic elastic constants of injection molded short glass fiber reinforced composites[J]. Journal of Mechanical Engineering,2017,53(24):126-134. [10] RAFIEE M A,RAFIEE J,WANG Z,et al. Enhanced mechanical properties of nanocomposites at low graphene content[J]. Acs Nano,2009,3(12):3884-3890. [11] XING W,LI H,HUANG G,et al. Graphene oxide induced crosslinking and reinforcement of elastomers[J]. Composites Science and Technology,2017,144:223-229. [12] POUR Z S,GHAEMNY M. Polymer grafted graphene oxide:For improved dispersion in epoxy resin and enhancement of mechanical properties of nanocomposite[J]. Composites Science and Technology,2016,136:145-157. [13] PUTZ K W,COMPTON R C,PALMERI R J,et al. High-nanofiller-content graphene oxide-polymer nanocomposites via vacuum-assisted self-assembly[J]. Advanced Materials for Optics and Electronics,2010,20(19):3322-3329. [14] BALANDIN A A. Thermal properties of graphene and nanostructured carbon materials[J]. Nature Materials,2011,1(10):569-581. [15] YANG H,ZHAO H,WANG T,et al. A multi-layered SiC coating to protect graphite spheres from high temperature oxidation in static air[J]. Corrosion Science,2021,183:109325. [16] ZHAO H,DING J,LIU P,et al. Boron nitride-epoxy inverse "nacre-like" nanocomposite coatings with superior anticorrosion performance[J]. Corrosion Science,2021,183:109333. [17] LUO X,ZHONG J,ZHOU Q,et al. Cationic reduced graphene oxide as self-aligned nanofiller in the epoxy nanocomposite coating with excellent anticorrosive performance and its high antibacterial activity[J]. ACS Applied Materials & Interfaces,2018,10(21):18400-18415. [18] ZHANG Y,ZOU Q,HSU H S,et al. Morphology effect of vertical graphene on the high performance of supercapacitor electrode[J]. ACS Appl. Mater. Interfaces,2016,8(11):7363-7369. [19] ZHENG W,ZHAO X,FU W. Review of vertical graphene and its applications[J]. ACS Applied Materials And Interfaces,2021,13(8):9561-9579. [20] XIAO F X,PAG L M,XU Y J,et al. Layer-by-layer assembly of versatile nanoarchitectures with diverse dimensionality:A new perspective for rational construction of multilayer assemblies[J]. Chemical Society Reviews,2016,45(11):3088-3121. [21] 吕青,颜红侠,刘超. 聚合物/定向石墨烯复合材料研究进展[J]. 工程塑料应,2016,44(2):140-144. LÜ Qing,YAN Hongxia,LIU Chao. Research progress of polymer/oriented graphene composites[J]. Engineering Plastics,2016,44(2):140-144. [22] HU C,LI J,LIU D,et al. Effects of the coagulation temperature on the properties of wet-spun poly(vinyl alcohol)-graphene oxide fibers[J]. Journal of Applied Polymer Science,2017,134(43):45463-45470. [23] GAO Y,PICOT O T,WEI T,et al. Multilayer coextrusion of graphene polymer nanocomposites with enhanced structural organization and properties[J]. Journal of Applied Polymer Science,2018,135(13):46041-46051. [24] LADANI R B,WU S,KINLOCH A J,et al. Multifunctional properties of epoxy nanocomposites reinforced by aligned nanoscale carbon[J]. Materials & Design,2016,94:554-564. [25] ZHAO X,ZHANG Q,HAO Y,et al. Alternate multilayer films of poly(vinyl alcohol) and exfoliated graphene oxide fabricated via a facial layer-by-layer assembly[J]. Macromolecules,2010,43(22):9411-9416. [26] CHEN W,LIU P,MIN L,et al. Non-covalently functionalized graphene oxide-based coating to enhance thermal stability and flame retardancy of PVA film[J]. Nano-Micro Letters,2018,10(3):39-51. [27] RAMANATHAN M,KILBEY I,JI Q,et al. Materials self-assembly and fabrication in confined spaces[J]. Journal of Materials Chemistry,2012,22(21):10389-10405. [28] 杨士萱,矫维成,楚振明,等. 石墨烯定向排列增强聚合物基复合材料研究进[J]. 玻璃钢/复合材料,2019(3):92-100. YANG Shixuan,JIAO Weicheng,CHU Zhenming,et al. Research progress of polymer matrix composites reinforced by oriented graphene[J]. Frp/Composites,2019(3):92-100. [29] XU Y,HONG W,HUA B,et al. Strong and ductile poly(vinyl alcohol)/graphene oxide composite films with a layered structure[J]. Carbon,2009,47(15):3538-3543. [30] CAO R,CHEN Z,WU Y,et al. Precisely controlled growth of poly(ethyl acrylate) chains on graphene oxide and the formation of layered structure with improved mechanical properties[J]. Composites Part A Applied Science & Manufacturing,2017,93:100-106. [31] YOUSEFI N,GUDARZI M M,ZHENG Q,et al. Ultralarge-size reduced graphene oxide/polyurethane nanocomposites:Mechanical properties and moisture permeability[J]. Composites Part A:Applied Science & Manufacturing,2013,49(6):42-50. [32] YOUSEFI N,LIN X,ZHENG Q,et al. Simultaneous in situ reduction,self-alignment and covalent bonding in graphene oxide/epoxy composites[J]. Carbon,2013,59(7):406-417. [33] 韩依廷. 定向排列石墨烯/聚合物复合材料研究进展[J]. 石化,2017,24(12):207-208. HAN Yiting. Research progress of oriented graphene/polymer composites[J]. Petrochemicals,2017,24(12):207-208. [34] 邱峰. 石墨烯功能化及其在聚丙烯基体中取向分布研究[D]. 重庆:西南大学,2015. QIU Feng. Functionalization of graphene and its orientation distribution in polypropylene matrix[D]. Chongqing:Southwest University,2015. [35] SUN Haiyan,LIU Yingjun,XU Zhen,et al. Experimental guidance to graphene macroscopic wet-spun fibers,continuous papers,and ultralightweight aerogels[J]. Chemistry of Materials,2016,29(1):319-330. [36] LIANG J,XU Y,DONG S,et al. Flexible,magnetic,and electrically conductive graphene/Fe3O4 paper and its application for magnetic-controlled switches[J]. Journal of Physical Chemistry C,2010,114:17465-17471. [37] CORREA M A,GRZELCZAK M,DIAZ R,et al. Alignment of carbon nanotubes under low magnetic fields through attachment of magnetic nanoparticles[J]. Journal of Physical Chemistry B,2005,109(41):19060-19063. [38] LIU Yuewen,GUAN Mengxue,Deng Shunliu,et al. Facile and straightforward synthesis of superparamagnetic reduced graphene oxide-Fe3O4 hybrid composite by a solvothermal reaction[J]. Nanotechnology,2013,24(2):25604. [39] HE F,FAN J,DONG M,et al. The attachment of Fe3O4nanoparticles to graphene oxide by covalent bonding[J]. Carbon,2010,48(11):3139-3144. [40] ROBERT J,FULLERTON P,COLE D,et al. Graphene non-covalently tethered with magnetic nanoparticles[J]. Carbon,2014,72:192-199. [41] ROURKE J P,PANDEY P A,MOORE J J,et al. The real graphene oxide revealed:Stripping the oxidative debris from the graphene-like sheets[J]. Angew. Chem. Int. Ed. Engl.,2012,50(14):3173-3177. [42] STANKOVICH S,PINER R D,CHEN X,et al. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate)[J]. Journal of Materials Chemistry,2016,16(2):155-158. [43] LIU Z,JIAO W,YAN M,et al. A novel method for imitating nacre by utilizing magnetic graphene oxide and its magnetic field alignment in polymer nanocomposites[J]. Materials Research Express,2018,5(2):1-11. [44] RENTERIA J,LEGEDZA S,SALGADO R,et al. Magnetically-functionalized self-aligning graphene fillers for high-efficiency thermal management applications[J]. Materials & Design,2015,88(25):214-221. [45] DING R,CHEN S,ZHOU N,et al. The diffusion-dynamical and electrochemical effect mechanism of oriented magnetic graphene on zinc-rich coatings and the electrodynamics and quantum mechanics mechanism of electron conduction in graphene zinc-rich coatings[J]. Journal of Alloys and Compounds,2019,784:756-768. [46] DING R,ZHENG Z,YU H,et al. Study of water permeation dynamics and anti-corrosion mechanism of graphene/zinc coatings[J]. Journal of Alloys and Compounds,2018,748:481-495. [47] DING R,WANG X,JIANG J,et al. Study on evolution of coating state and role of graphene in graphene-modified low-zinc waterborne epoxy anticorrosion coating by electrochemical impedance spectroscopy[J]. Journal of Materials Engineering and Performance,2017,26(7):3319-3335. [48] YAN H,WANG R,LI Y,et al. Thermal conductivity of magnetically aligned graphene-polymer composites with Fe3O4-decorated graphene nanosheets[J]. Journal of Electronic Materials,2015,44(2):658-666. [49] TANG Y,YAN H,LONG W,et al. Enhanced thermal conductivity in polymer composites with aligned graphene nanosheets[J]. Journal of Materials Science,2014,49(15):5256-5264. [50] 郝毅杰,胡晓东,黄娟,等. 磁性石墨烯/环氧树脂复合材料的制备及性能[J]. 热固性树脂,2020,35(5):41-45. HAO Yijie,HU Xiaodong,HUANG Juan,et al. Preparation and properties of magnetic graphene/epoxy resin composites[J]. Thermosetting Resin,2020,35(5):41-45. [51] CHATTERJEE S,NAFEZAREFI F,TAI N H,et al. Size and synergy effects of nanofiller hybrids including graphene nanoplatelets and carbon nanotubes in mechanical properties of epoxy composites[J]. Carbon,2012,50(15):5380-5386. [52] ZHAO W,WANG H,TANG H,et al. Facile preparation of epoxy-based composite with oriented graphite nanosheets[J]. Polymer,2006,47(26):8401-8405. [53] LIN F,YANG G,NIU C,et al. Planar alignment of graphene sheets by a rotating magnetic field for full exploitation of graphene as a 2D material[J]. Advanced Functional Materials,2018,28(46):1805255.1-1805255.7. [54] KIM G H,SHKEL Y M. Polymeric composites tailored by electric field[J]. Journal of Materials Research,2004,19(4):1164-1174. [55] PANG H,LU Q,GAO F. Graphene oxide induced growth of one-dimensional fusiform zirconia nanostructures for highly selective capture of phosphopeptides[J]. Chemical Communications,2011,47(42):11772-11774. [56] VENUGOPAL G,KRAUSE S,WNEK G E. Modification of polymer blend morphology using electric fields[J]. Journal of Polymer Science Part C Polymer Letters,1989,27(12):497-501. [57] CHEN Y,SPRECHER A F,CONRAD H. Electrostatic particle-particle interactions in electrorheological fluids[J]. Journal of Applied Physics,1991,70(11):6796-6803. [58] CHEN T Y,BRISCOE B J,LUCKHAM P F. Microstructural studies of electro-rheological fluids under shear[J]. Journal of the Chemical Society Faraday Transactions,1995,91(12):1787-1794. [59] HILL J C,STEEN T. Response times of electrorheological fluids[J]. Journal of Applied Physics,1991,70(3):1207-1211. [60] BONNECAZE R T,BRADY J F. Dynamic simulation of an electrorheological fluid[J] The Journal of Chemical Physics,1992,96(3):2183-2202. [61] MELROSE J R,HEYES D M. Simulations of electrorheological and particle mixture suspensions:Agglomerate and layer structures[J]. Journal of Chemical Physics,1993,98(7):5873-5886. [62] CLERCXl H,BOSSIS G. Many-body electrostatic interactions in electrorheological fluids[J]. Physical Review E,1993,48(4):2721-2738. [63] FU L,RESCA L. Electrical response of heterogeneous systems of nonlinear inclusions[J]. Physical Review B Condensed Matter,1995,47(24):16194-16204. [64] FU L,RESCA L. Exact theory of the electrostatic interaction in electrorheological fluids and the effects of particle structure[J]. Solid State Communications,1996,99(2):83-87. [65] TANAKA K,FUJIOKA Y,KUBONO A,et al. Electrically developed morphology of carbon nanoparticles in suspensions monitored by in situ optical observations under sinusoidal electric field[J]. Colloid and Polymer Science,2006,284(5):562-567. [66] BORDEL D,PUTAUX J,HEUX L. Orientation of native cellulose in an electric field[J]. Langmuir the ACS Journal of Surfaces & Colloids,2006,22(11):4899-4901. [67] HU Z,FISCHBEIN M,QUERNER C,et al. Electric-field-driven accumulation and alignment of CdSe and CdTe nanorods in nanoscale devices[J]. Nano Letters,2006,6(11):2585-2591. [68] CHEN X,SAITO T,YAMADA H,et al. Aligning single-wall carbon nanotubes with an alternating-current electric field[J]. Applied Physics Letters,2001,78(23):3714-3716. [69] KUMAR H,KIM H,LEE S,et al. Influence of electric field type on the assembly of single walled carbon nanotubes[J]. Chemical Physics Letters,2004,383(34):235-239. [70] KAMAT P,THOMAS K,BARAZZOUK S,et al. Self-assembled linear bundles of single wall carbon nanotubes and their alignment and deposition as a film in a dc field[J]. Journal of the American Chemical Society,2004,126(34):10757-10762. [71] SANDLER J,WINDLE A,SCHWARZ M,et al. Electric field-induced aligned multi-wall carbon nanotube networks in epoxy composites[J]. Polymer,2005,46(3),877-901. [72] CHEN Z,YANG Y,WU Z,et al. Electric-field-enhanced assembly of single-walled carbon nanotubes on a solid surface[J]. Journal of Physical Chemistry B,2005,109(12):5473-5477. [73] ZHANG H,ZHAO W,ZHANG W,et al. Preparation of polymer/oriented graphite nanosheet composite by electric field-inducement[J]. Composites Science and Technology,2008,68(1):238-243. [74] GUO Y,CHEN Y,WANG E,et al. Roll-to-roll continuous manufacturing multifunctional nanocomposites by electric-field-assisted "Z" direction alignment of graphite flakes in poly(dimethylsiloxane)[J]. ACS Applied Materials & Interfaces,2017,9(1):919-929. [75] BHASIN M,WU S,LADANI R,et al. Increasing the fatigue resistance of epoxy nanocomposites by aligning graphene nanoplatelets[J]. International Journal of Fatigue,2018,113:88-97. [76] KHORAMISHAD H,VAFA S. Effect of aligning graphene oxide nanoplatelets using direct current electric field on fracture behaviour of adhesives[J]. Fatigue & Fracture of Engineering Materials & Structures,2018,41(12):2514-2529. [77] 董若宇,曹鹏,曹桂兴,等. 直流电场下水中石墨烯定向行为研究[J]. 物理学报,2017,66(1):218-225. DONG Ruoyu,CAO Peng,CAO Guixing,et al. Study on orientation behavior of graphene in water under DC electric field[J]. Acta Physics Sinica,2017,66(1):218-225. [78] PRASSE T,FLANDIN L,SCHULTE K,et al. In situ observation of electric field induced agglomeration of carbon black in epoxy resin[J]. Applied Physics Letters,1988,72(22):2903-2905. [79] SCHWARZ M,BAUHOFER W,SCHULTE K. Alternating electric field induced agglomeration of carbon black filled resins[J]. Polymer,2002,43(10):3079-3082. [80] WU S,LADANI R B,ZANG J,et al. Aligning multilayer graphene flakes with an external electric field to improve multifunctional properties of epoxy nanocomposites[J]. Carbon,2015,94:607-618. [81] Zhu X,Yan Q,Cheng L,et al. Self-alignment of cationic graphene oxide nanosheets for anticorrosive reinforcement of epoxy coatings[J]. Chemical Engineering Journal,2020,389:124435. [82] 徐霞,王飞,毛健. 定向排列石墨烯/丁苯橡胶复合材料的电热性能研究[J]. 电子元件与材料,2020,39(3):23-27. XU Xia,WANG Fei,MAO Jian. Electrothermal properties of oriented graphene/styrene butadiene rubber composites[J]. Electronic Components and Materials,2020,39(3):23-27. |