机械工程学报 ›› 2025, Vol. 61 ›› Issue (7): 77-97.doi: 10.3901/JME.2025.07.077
葛佳1, 傅国宇2, 邹云鹤3, 罗明4
收稿日期:
2024-06-03
修回日期:
2024-11-20
发布日期:
2025-05-12
作者简介:
葛佳,男,1998年出生,博士。主要研究方向为碳纤维复合材料加工损伤机理及过程优化。E-mail:jge02@qub.ac.uk基金资助:
GE Jia1, FU Guoyu2, ZOU Yunhe3, LUO Ming4
Received:
2024-06-03
Revised:
2024-11-20
Published:
2025-05-12
摘要: 碳纤维增强树脂基复合材料(Carbon fiber reinforced plastic,CFRP)具有高比强度、高比模量、可设计性强、耐腐蚀耐疲劳等优良特性,在航空航天、交通运输、风电能源及医疗等领域广泛应用。然而,其各向异性、非均质性、层间强度低和温度敏感性增加了加工难度,传统机械加工方法存在刀具磨损严重、加工表面质量及尺寸精度难以控制等问题,易产生分层、毛刺、纤维脱粘和表面空洞等加工缺陷,严重降低碳纤维增强树脂基复合材料构件的服役性能和可靠性。针对上述挑战,特种加工技术逐步受到研究和应用。针对激光束加工、电火花加工、水射流加工和超声振动加工四个最为广泛应用的特种加工技术展开综述,详细介绍各个特种加工技术的优势与存在的挑战,对缺陷形成机理进行分析,并总结缺陷抑制方法,最后归纳各特种加工技术的适用场景并得出结论展望未来研究。综述表明:与传统机械加工相比,特种加工在微细结构、高精度、复杂形状工件加工方面展现出独特优势;但是其材料去除率显著低于传统机械加工,因此在大批量加工中仍难以完全替代传统机械加工。未来研究应着重探索特种加工工艺优化、特种与传统加工的复合工艺、专用化与智能化装备开发等方面,同时关注电子束、离子束等其他特种加工工艺的潜力。特种加工技术将对提升先进复合材料加工的精度与效率有着重要意义,将推动高性能材料朝着更广泛的应用场景迈进。
中图分类号:
葛佳, 傅国宇, 邹云鹤, 罗明. 碳纤维增经强树脂基复合材料特种加工综述[J]. 机械工程学报, 2025, 61(7): 77-97.
GE Jia, FU Guoyu, ZOU Yunhe, LUO Ming. A Review of Non-conventional Machining of Carbon Fibre Reinforced Plastic Composite[J]. Journal of Mechanical Engineering, 2025, 61(7): 77-97.
[1] MIYANO Y,NAKADA M. Integrated accelerated testing methodology for CFRP durability[J]. Composites Part B: Engineering,2024,281: 111527. [2] KHAN F,HOSSAIN N,MIM J J,et al. Advances of composite materials in automobile applications – A review[J]. Journal of Engineering Research,2024. [3] KOORD J,HÜHNE C. Effect of low temperature on interlaminar fracture toughness of multi-directional CFRP and CFRP-steel interfaces[J]. Composites Part B:Engineering,2024,281:111540. [4] MARTIN R G,JOHANSSON C,TAVARES J R,et al. CF/PEEK skins assembly by induction welding for thermoplastic composite sandwich panels[J]. Composites Part B:Engineering,2024,284:111676. [5] 付饶. CFRP低损伤钻削制孔关键技术研究[D]. 大连:大连理工大学,2017. FU Rao. Research of key technologies for low-damage drilling CFRP composites [D]. Dalian:Dalian University of Technology,2017. [6] GE J,LUO M,ZHANG D,et al. Temperature field evolution and thermal-mechanical interaction induced damage in drilling of thermoplastic CF/PEKK – A comparative study with thermoset CF/epoxy[J]. Journal of Manufacturing Processes,2023,88:167-83. [7] MIRDEHGHAN S A. 1- Fibrous polymeric composites [M]. Woodhead Publishing,2021. [8] SONG Y,CAO H,WANG Q,et al. Surface roughness prediction model in high-speed dry milling CFRP considering carbon fiber distribution[J]. Composites Part B:Engineering,2022,245:110230. [9] WANG Q,JIA X. Multi-objective optimization of CFRP drilling parameters with a hybrid method integrating the ANN,NSGA-II and fuzzy C-means[J]. Composite Structures,2020,235:111803. [10] BLANCO D,RUBIO E M,SáENZ DE PIPAóN J M,et al. Thicknesses/roughness relationship in Mg-Al-Mg and Mg-Ti-Mg hybrid component plates for drilled aeronautical lightweight parts[J]. Applied Sciences,2020,10(22):8208. [11] AHMAD SOBRI S,WHITEHEAD D,MOHAMED M,et al. Augmentation of the delamination factor in drilling of carbon fibre-reinforced polymer composites (CFRP)[J]. Polymers (Basel),2020,12(11):2461. [12] AHMAD J. Introduction to polymer composites [M]. Boston,MA:Springer,2009. [13] GE J,CATALANOTTI G,FALZON B G,et al. Process characteristics,damage mechanisms and challenges in machining of fibre reinforced thermoplastic polymer (FRTP) composites:A review[J]. Composites Part B:Engineering,2024,273:111247. [14] LI J,XU K,LIN Z,et al. A unified geometrical modeling and analysis method for evaluating CFRP machining performance:Cutting geometry space[J]. Composites Part B:Engineering,2024,283:111649. [15] KELSEY D,ELKINGTON H,JACKSON-CRISP A,et al. Laser cutting of CFRP using novel cutting strategies[J]. Procedia CIRP,2024,124:509-512. [16] GEIER N,XU J,POÓR D I,et al. A review on advanced cutting tools and technologies for edge trimming of carbon fibre reinforced polymer (CFRP) composites[J]. Composites Part B:Engineering,2023,266:111037. [17] ZHAI Y,LV S,YAN D,et al. Influence of fibre orientation on the slotting quality of CFRP composites using the multi-tooth mill[J]. Materials (Basel),2024,17(10):2441. [18] WANG F,XUAN S,CHANG Z,et al. Effect of grinding parameters on industrial robot grinding of CFRP and defect formation mechanism[J]. International Journal of Precision Engineering and Manufacturing-Green Technology,2024,11(2):427-38. [19] LIU S,ZHANG Z,ZHAO J,et al. A comparative study on milling-induced damages and residual tensile strength during milling of thermoplastic and thermoset carbon fibre reinforced polymers[J]. Polymer Testing,2023,125:108132. [20] MENG Z,LIU S,HU K,et al. A review on the cutting of carbon fiber reinforced thermoplastic composites[J]. Polymer Composites,2024,45(15):13459-79. [21] ZHANG Y,HU Z,WANG G,et al. Establishment of CFRP drilling simulation model considering heat accumulation effect and study on its delamination damage[J]. The International Journal of Advanced Manufacturing Technology,2024,134(3-4):1699-1710. [22] ZE G K,PRAMANIK A,BASAK A K,et al. Challenges associated with drilling of carbon fiber reinforced polymer (CFRP) composites-A review[J]. Composites Part C:Open Access,2023,11:100356. [23] GE J,TAN W,AHMAD S,et al. Temperature-dependent cutting physics in orthogonal cutting of carbon fibre reinforced thermoplastic (CFRTP) composite[J]. Composites Part A:Applied Science and Manufacturing,2024,176:107820. [24] GE J,CATALANOTTI G,FALZON B G,et al. Towards understanding the hole making performance and chip formation mechanism of thermoplastic carbon fibre/polyetherketoneketone composite[J]. Composites Part B:Engineering,2022,234:109752. [25] OUYANG W,JIAO J,XU Z,et al. Experimental study on CFRP drilling with the picosecond laser “double rotation” cutting technique[J]. Optics & Laser Technology,2021,142:107238. [26] WU C,CAO S,ZHAO Y J,et al. Preheating assisted wire EDM of semi-conductive CFRPs:Principle and anisotropy[J]. Journal of Materials Processing Technology,2021,288:116915. [27] PRITI,SINGH M,SINGH S. Micro-machining of CFRP composite using electrochemical discharge machining and process optimization by Entropy-VIKOR method[J]. Materials Today:Proceedings,2021,44:260-265. [28] ASMAEL M,SAFAEI B,ZEESHAN Q,et al. Ultrasonic machining of carbon fiber–reinforced plastic composites:A review[J]. The International Journal of Advanced Manufacturing Technology,2021,113(11):3079-3120. [29] EL-HOFY M,HELMY M O,ESCOBAR-PALAFOX G,et al. Abrasive water jet machining of multidirectional CFRP laminates[J]. Procedia CIRP,2018,68:535-540. [30] SUN Z,GENG D,ZHENG W,et al. An innovative study on high-performance milling of carbon fiber reinforced plastic by combining ultrasonic vibration assistance and optimized tool structures[J]. Journal of Materials Research and Technology,2023,22:2131-46. [31] CHEN C,ZHANG G,HUANG Y,et al. Study on the CFRP nanosecond laser cutting damage and efficiency by aspiration system assisted method[J]. Journal of Manufacturing Processes,2023,102:95-105. [32] GUU Y H,HOCHENG H,TAI N H,et al. Effect of electrical discharge machining on the characteristics of carbon fiber reinforced carbon composites[J]. Journal of Materials Science,2001,36(8):2037-2043. [33] LI M,LIN X,YANG X,et al. Study on KERF characteristics and surface integrity based on physical energy model during abrasive waterjet cutting of thick CFRP laminates[J]. The International Journal of Advanced Manufacturing Technology,2021,113(1-2):73-85. [34] XU J,GEIER N,SHEN J,et al. A review on CFRP drilling:Fundamental mechanisms,damage issues,and approaches toward high-quality drilling[J]. Journal of Materials Research and Technology,2023,24:9677-9707. [35] GENG D,LIU Y,SHAO Z,et al. Delamination formation,evaluation and suppression during drilling of composite laminates:A review[J]. Composite Structures,2019,216:168-186. [36] POóR D I,GEIER N,PERESZLAI C,et al. A critical review of the drilling of CFRP composites:Burr formation,characterization and challenges[J]. Composites Part B:Engineering,2021,223:109155. [37] SONG Y,CAO H,ZHENG W,et al. Cutting force modeling of machining carbon fiber reinforced polymer (CFRP) composites:A review[J]. Composite Structures,2022,299:116096. [38] GEIER N,DAVIM J P,SZALAY T. Advanced cutting tools and technologies for drilling carbon fibre reinforced polymer (CFRP) composites:A review[J]. Composites Part A:Applied Science and Manufacturing,2019,125:105552. [39] ZHU W,FU H,LI F,et al. Optimization of CFRP drilling process:A review[J]. The International Journal of Advanced Manufacturing Technology,2022,123(5):1403-32. [40] MA H,DONG Z,WANG Z,et al. Tool wear in cutting carbon fiber reinforced polymer/ceramic matrix composites:A review[J]. Composite Structures,2024,337:118033. [41] BAJORIA A,ALSHAER A,ABDALLAH R. Assessing wire EDM as a novel approach for CFRP drilling:Performance and thermal analysis across lay-up configurations[J]. The International Journal of Advanced Manufacturing Technology,2024,134(1-2):731-749. [42] ROWE A,PRAMANIK A,BASAK A K,et al. Effects of abrasive waterjet machining on the quality of the surface generated on a carbon fibre reinforced polymer composite[J]. Machines,2023,11(7):749. [43] LIU S,SUN Y,DU Y,et al. Investigating the material removal mechanism and cutting performance in ultrasonic vibration-assisted milling of carbon fibre reinforced thermoplastic[J]. Materials Research Express,2023,10(9):095603. [44] RAJURKAR K P,HADIDI H,PARITI J,et al. Review of sustainability issues in non-traditional machining processes[J]. Procedia Manufacturing,2017,7:714-720. [45] RIVEIRO A,QUINTERO F,LUSQUIñOS F,et al. Experimental study on the CO2 laser cutting of carbon fiber reinforced plastic composite[J]. Composites Part A:Applied Science and Manufacturing,2012,43(8):1400-1409. [46] ZHAO C,MA Z,SUN J,et al. Femtosecond laser drill high modulus CFRP multidirectional laminates with a segmented arc-based concentric scanning method[J]. Composite Structures,2024,329:117769. [47] ZHAO C,MA Z,SUN J,et al. Femtosecond laser drill high modulus CFRP multidirectional laminates with a segmented arc-based concentric scanning method[J]. Composite Structures,2024,329:117769. [48] XU J,JING C,JIAO J,et al. Experimental study on carbon fiber-reinforced composites cutting with nanosecond laser[J]. Materials (Basel),2022,15(19):6686. [49] RAO S,SETHI A,DAS A K,et al. Fiber laser cutting of CFRP composites and process optimization through response surface methodology[J]. Materials and Manufacturing Processes,2017,32(14):1612-1621. [50] SUN D,HAN F,YING W. The experimental investigation of water jet–guided laser cutting of CFRP[J]. The International Journal of Advanced Manufacturing Technology,2019,102(1-4):719-729. [51] LI W,RONG Y,HUANG Y,et al. Dimethicone-assisted interlaced scanning compound cutting for regulating thermal damage in CFRP laser cutting by synergistic suppression of coupled heat effect[J]. Composites Part B:Engineering,2023,266:110969. [52] JIAO J,CHENG X,WANG J,et al. A review of research progress on machining carbon fiber-reinforced composites with lasers[J]. Micromachines 2023, 14(1):24. [53] SINGH Y,SINGH J,SHARMA S,et al. Multi-objective Optimization of kerf-taper and surface-roughness quality characteristics for cutting-operation on coir and carbon fibre reinforced epoxy hybrid polymeric composites during CO2-pulsed laser-cutting using RSM[J]. Lasers in Manufacturing and Materials Processing,2021,8(2):157-182. [54] LI M,LI S,YANG X,et al. Fiber laser cutting of CFRP laminates with single- and multi-pass strategy:A feasibility study[J]. Optics & Laser Technology,2018,107:443-453. [55] SALAMA A,YAN Y,LI L,et al. Understanding the self-limiting effect in picosecond laser single and multiple parallel pass drilling/machining of CFRP composite and mild steel[J]. Materials & Design,2016,107:461-469. [56] ZHU M,WEI C,GUO W,et al. Significant reduction in energy consumption and carbon emission while improving productivity in laser drilling of CFRP sheets with a novel stepped process parameter parallel ring method[J]. Journal of Manufacturing and Materials Processing,2022, 6(1):7. [57] LI W,HUANG Y,CHEN X,et al. Study on laser drilling induced defects of CFRP plates with different scanning modes based on multi-pass strategy[J]. Optics & Laser Technology,2021,144:107400. [58] LI W,ZHANG G,HUANG Y,et al. UV laser high-quality drilling of CFRP plate with a new interlaced scanning mode[J]. Composite Structures,2021,273:114258. [59] WU Y,ZHANG G,WANG J,et al. The cutting process and damage mechanism of large thickness CFRP based on water jet guided laser processing[J]. Optics & Laser Technology,2021,141:107140. [60] PERROTTET D,HOUSH R,RICHERZHAGEN B,et al. Heat damage-free laser-microjet cutting achieves highest die fracture strength[C]// Proc. SPIE 5713, Photon Processing in Microelectronics and Photonics IV, (12 April 2005). [61] EL-HOFY M H,EL-HOFY H. Laser beam machining of carbon fiber reinforced composites:A review[J]. The International Journal of Advanced Manufacturing Technology,2018,101(9-12):2965-2975. [62] WANG P,ZHANG Z,HAO B,et al. Investigation on heat transfer and ablation mechanism of CFRP by different laser scanning directions[J]. Composites Part B:Engineering,2023,262:110827. [63] LI M,CHEN L,YANG X. A feasibility study on high-power fiber laser cutting of thick CFRP laminates using single-pass strategy[J]. Optics & Laser Technology,2021,138:106889. [64] LI W,ZHANG G,HUANG Y,et al. Drilling of CFRP plates with adjustable pulse duration fiber laser[J]. Materials and Manufacturing Processes,2021,36(11):1256-1263. [65] GE J,ZHANG W,LUO M,et al. Multi-objective optimization of thermoplastic CF/PEKK drilling through a hybrid method:An approach towards sustainable manufacturing[J]. Composites Part A:Applied Science and Manufacturing,2023,167:107418. [66] LI W,RONG Y,HUANG Y,et al. Dimethicone-assisted interlaced scanning compound cutting for regulating thermal damage in CFRP laser cutting by synergistic suppression of coupled heat effect[J]. Composites Part B:Engineering,2023,266:110969. [67] LOUIS M,JOSHI S P,BROCKMANN W. An experimental investigation of through-thickness electrical resistivity of CFRP laminates[J]. Composites Science and Technology,2001,61(6):911-919. [68] PATTANAYAK S,SAHOO A K,SAHOO S K. CFRP composite drilling through electrical discharge machining using aluminum as fixture plate[J]. Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science,2021,236(10):5468-5483. [69] DUTTA H,DEBNATH K,SARMA D K. Improving the performance of µED-milling using assisting electrode for fabricating micro-channels in CFRP composites[J]. Materials Today:Proceedings,2020,28:755-760. [70] DUTTA H,DEBNATH K,SARMA D K. Investigation on cutting of thin carbon fiber-reinforced polymer composite plate using sandwich electrode-assisted wire electrical-discharge machining[J]. Proceedings of the Institution of Mechanical Engineers,Part E:Journal of Process Mechanical Engineering,2021,235(5):1628-1638. [71] P S S,SINGH S,MALIK A. A review on micro-drilling by electrochemical discharge machining[J]. Engineering Research Express,2023,5(2):022004. [72] PRAKASH A,KUMAR A,BALLAV R. Process capability of electrochemical discharge machining:A review[J]. Proceedings of the Institution of Mechanical Engineers,Part L:Journal of Materials:Design and Applications,2023,238(2):282-300. [73] SINGH M,SINGH S,KUMAR S. Investigating the impact of LASER assistance on the accuracy of micro-holes generated in carbon fiber reinforced polymer composite by electrochemical discharge machining[J]. Journal of Manufacturing Processes,2020,60:586-595. [74] BHARGAV K V J,BALAJI P S,SAHU R K,et al. Exemplary approach using tool rotation-assisted µ-ECDM for CFRP composites machining[J]. Materials and Manufacturing Processes,2022,38(3):271-283. [75] YADAV S K,SINGH A,DEBNATH K,et al. Experimental investigation and comparative study between machining of CFRP composite and CNT-mixed CFRP composite using ECDM process[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering,2023,45(9):454. [76] WANG Y,WANG J,LIU Z,et al. Nanocone-shaped Ni-electroplated carbon fiber composite films for electromagnetic shielding applications[J]. Journal of Materials Research and Technology,2023,27:4625-4632. [77] BARD S,SCHöNL F,DEMLEITNER M,et al. Copper and nickel coating of carbon fiber for thermally and electrically conductive fiber reinforced composites[J]. Polymers 2019, 11(5): 823. [78] FENG Y,ZHANG Z,YUE D,et al. Recent progress in degradation and recycling of epoxy resin[J]. Journal of Materials Research and Technology,2024,32:2891-2912. [79] LI L,BI F Q,FENG L,et al. Effect of low-temperature gas-cooled electrode on the performance of EDM process[J]. The International Journal of Advanced Manufacturing Technology,2015,86(1-4):717-722. [80] SHARMA H,KUMAR A,RANA S,et al. Critical review on advancements on the fiber-reinforced composites:Role of fiber/matrix modification on the performance of the fibrous composites[J]. Journal of Materials Research and Technology,2023,26:2975-3002. [81] RAJAGURU J,KUMAR P,ARUNACHALAM N. Novel carbon nanotubes reinforced copper composite electrode for improved performance of electric discharge machining[J]. Materials Letters,2022,307:131063. [82] PHAM VAN D,SHIRGUPPIKAR S,HUU P N,et al. Influence of graphene coating in electrical discharge machining with an aluminum electrode[J]. Journal of the Mechanical Behavior of Materials,2023,32(1):20220287. [83] 高卫东,赵韡,潘浩宇,等. 基于Halcon的磨料水射流加工断面特征识别与分析[J]. 机械设计与制造工程, 2024,53(1):110-114. GAO Weidong,ZHAO Wei,PAN Haoyu,et al. Characteristics identification and analysis of abrasive water jet machining section based on Halcon[J]. Machine Design and Manufacturing Engineering,2024,53(1):110-114. [84] 贾振元,付饶,王福吉. 碳纤维复合材料构件加工技术进展[J]. 机械工程学报,2023,59(19):348-374. JIA Zhenyuan,FU Rao,WANG Fuji. Research advance review of machining technology for carbon fiber reinforced polymer composite components[J]. Journal of Mechanical Engineering,2023,59(19):348-374. [85] THAKUR R K,SINGH K K. Abrasive waterjet machining of fiber-reinforced composites:A state-of-the-art review[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering,2020,42(7):381. [86] WANG J. Abrasive Waterjet Machining of Polymer Matrix Composites – Cutting Performance,Erosive Process and Predictive Models[J]. The International Journal of Advanced Manufacturing Technology,1999,15(10):757-768. [87] DHANAWADE A,KUMAR S. Study on carbon epoxy composite surfaces machined by abrasive water jet machining[J]. Journal of Composite Materials,2019,53(20):2909-2924. [88] RAMULU M,JENKINS M,GUO Z. Abrasive water jet machining mechanisms in continuous-fiber ceramic composites[J]. Journal of Composites Technology and Research,2001,23(2):82-91. [89] 朱超凡,陈晓川,鲍劲松. 面向碳-碳复合材料的激光和水射流组合制孔工艺仿真建模和实验研究[J]. 现代制造工程,2020(1):10-17. ZHU Chaofan,CHEN Xiaochuan,BAO Jinsong. Simulation modeling and experimental study on hole making process combined laser and water jet for carbon-carbon composite material[J]. Modern Manufacturing Engineering,2020(1):10-17. [90] ALTIN KARATAŞ M,GÖKKAYA H. A review on machinability of carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP) composite materials[J]. Defence Technology,2018,14(4):318-326. [91] 陈正文,任启乐,庞雷,等. 大尺寸碳纤维复合材料飞机蒙皮构件精密水切割装备的研制[J]. 流体机械,2019,47(9):12-16,26. CHEN Zhengwen,REN Qile,PANG Lei,et al. Development of precision water cutting equipment for large-size carbon fiber composite aircraft skin components[J]. Fluid Machinery,2019,47(9):12-16,26. [92] LIANG W,DONG H,MIAO L,et al. Predicting the geometric morphology of water jet machining in ultra-thick CFRP laminates based on analytical modeling[J]. Composites Part A:Applied Science and Manufacturing,2024,180:108055. [93] LI M,HUANG M,CHEN Y,et al. Effects of processing parameters on KERF characteristics and surface integrity following abrasive waterjet slotting of Ti6Al4V/CFRP stacks[J]. Journal of Manufacturing Processes,2019,42:82-95. [94] PUTZ M,RENNAU A,DIX M. High precision machining of hybrid layer composites by abrasive water jet cutting[J]. Procedia Manufacturing,2018,21:583-590. [95] COPERTARO E,PEROTTI F,CASTELLINI P,et al. Focusing tube operational vibration as a means for monitoring the abrasive waterjet cutting capability[J]. Journal of Manufacturing Processes,2020,59:1-10. [96] NYABORO J N,AHMED M A,EL-HOFY H,et al. Fluid-structure interaction modeling of the abrasive waterjet drilling of carbon fiber reinforced polymers[J]. Journal of Manufacturing Processes,2020,58:551-562. [97] 钟明建,胡炜杰,廖晓恬,等. 碳纤维复合材料部件加工技术现状及发展趋势[J]. 复合材料科学与工程,2022(5):110-119. ZHONG Mingjian,HU Weijie,LIAO Xiaotian,et al. Present situation and development trend of processing technology of carbon fiber composite parts[J]. Composites Science and Engineering,2022(5):110-119. [98] 李宗原. 聚合物基复合材料磨料水射流加工缺陷成因及消减策略[D]. 大连:大连理工大学,2019. LI Zongyuan. Causes and elimination strategies of defects in abrasive waterjet machining on polymer matrix composites[D]. Dalian:Dalian University of Technology,2019. [99] XU S,WANG J. A study of abrasive waterjet cutting of alumina ceramics with controlled nozzle oscillation[J]. The International Journal of Advanced Manufacturing Technology,2006,27(7):693-702. [100] LEMMA E,CHEN L,SIORES E,et al. Optimising the AWJ cutting process of ductile materials using nozzle oscillation technique[J]. International Journal of Machine Tools and Manufacture,2002,42(7):781-789. [101] SHANMUGAM D K,WANG J,LIU H. Minimisation of KERF tapers in abrasive waterjet machining of alumina ceramics using a compensation technique[J]. International Journal of Machine Tools and Manufacture,2008,48(14):1527-1534. [102] NING F,WANG H,CONG W,et al. A mechanistic ultrasonic vibration amplitude model during rotary ultrasonic machining of CFRP composites[J]. Ultrasonics,2017,76:44-51. [103] AMINI S,PAKTINAT H,BARANI A,et al. Vibration drilling of Al2024-T6[J]. Advanced Manufacturing Processes,2013,28(4):476-480. [104] 邵振宇,姜兴刚,张德远,等. CFRP旋转超声辅助钻削的缺陷抑制机理及实验研究[J]. 北京航空航天大学学报,2019,45(8):1613-1621. SHAO Zhenyu,JIANG Xinggang,ZHANG Deyuan,et al. Defect suppression mechanism and experimental study on rotary ultrasonic-assisted drilling of CFRP[J]. Journal of Beijing University of Aeronautics and Astronsutics,2019,45(8):1613-1621. [105] 束静,廖文和,郑侃,等. 旋转超声加工碳纤维复合材料研究现状与展望[J]. 航空学报,2024,45(13):108-132. SHU Jing,LIAO Wenhe,ZHENG Kan,et al. Review on rotary ultrasonic machining of carbon fiber composites[J]. Acta Aeronautica et Astronautica Sinica,2024,45(13):108-132. [106] ZHANG X,SUI H,ZHANG D,et al. Feasibility study of high-speed ultrasonic vibration cutting titanium alloy[J]. Journal of Mechanical Engineering,2017,53(19):120-127. [107] 李哲,王新,张毅,等. CFRP超声振动套磨钻孔高效排屑机理和实验[J]. 北京航空航天大学学报,2020,46(1):229-240. LI Zhe,WANG Xin,ZHANG Yi,et al. Mechanism and experiment on high-efficiency chip removal in ultrasonic vibration core drilling of CFRP[J]. Journal of Beijing University of Aeronautics and Astronsutics,2020,46(1):229-240. [108] GENG D,LIU Y,SHAO Z,et al. Delamination formation and suppression during rotary ultrasonic elliptical machining of CFRP[J]. Composites Part B:Engineering,2020,183:107698. [109] ZHENG F,DONG Z,KANG R,et al. Analysis of material removal behavior in ultrasonically assisted scratching of RB-SiC from energy aspects[J]. The International Journal of Advanced Manufacturing Technology,2018,98(9):2257-2270. [110] 李文,尹礁,吕垒平,等. 不分离型超声椭圆振动切削力特性研究[J]. 航空学报,2013,34(9): 2241-2248. LI Wen,YIN Qiao,LÜ Leiping,et al. Study on the unseparated ultrasonic elliptical vibration cutting force[J]. Acta Aeronautica et Astronautica Sinica,2013,34(9):2241-2248. [111] YING E,ZHOU Z,GENG D,et al. High-efficiency ultrasonic assisted drilling of CFRP/Ti stacks under non-separation type and dry conditions[J]. Journal of Zhejiang University-Science A,2024,25(4):275-291. [112] 张德远,彭振龙,耿大喜,等. 高效低损伤高速波动式超声加工技术进展[J]. 航空制造技术,2022, 65(8):22-33. ZHANG Deyuan,PENG Zhenlong,GENG Daxi,et al. Development of high-speed wave-motion ultrasonic machining technology with high efficiency and low damage[J]. Aeronautical Manufacturing Technology,2022,65(8):22-33. [113] KURNIAWAN R,AHMED F,ALI S,et al. Analytical,FEA,and experimental research of 2D-vibration assisted cutting (2D-VAC) in titanium alloy Ti6Al4V[J]. The International Journal of Advanced Manufacturing Technology,2021,117(5):1739-64. [114] SATPUTE V,HUO D,HEDLEY J,et al. A comprehensive experimental investigation into vibration-assisted micro-milling of monocrystalline silicon[J]. Journal of Manufacturing Processes,2024,131:12-26. [115] LIU J,ZHANG D,QIN L,et al. Feasibility study of the rotary ultrasonic elliptical machining of carbon fiber reinforced plastics (CFRP)[J]. International Journal of Machine Tools and Manufacture,2012,53(1):141-150. [116] XU W,ZHANG L C. On the mechanics and material removal mechanisms of vibration-assisted cutting of unidirectional fibre-reinforced polymer composites[J]. International Journal of Machine Tools and Manufacture,2014,80-81:1-10. [117] XU W,ZHANG L. Mechanics of fibre deformation and fracture in vibration-assisted cutting of unidirectional fibre-reinforced polymer composites[J]. International Journal of Machine Tools and Manufacture,2016,103:40-52. [118] WANG H,HU Y,CONG W,et al. A novel investigation on horizontal and 3D elliptical ultrasonic vibrations in rotary ultrasonic surface machining of carbon fiber reinforced plastic composites[J]. Journal of Manufacturing Processes,2020,52:12-25. [119] CHEN J P,GU L,HE G J. A review on conventional and nonconventional machining of SiC particle-reinforced aluminium matrix composites[J]. Advances in Manufacturing,2020,8(3):279-315. [120] GE J,ZHANG W,LUO M,et al. Multi-objective optimization of thermoplastic CF/PEKK drilling through a hybrid method:An approach towards sustainable manufacturing[J]. Composites Part A:Applied Science and Manufacturing,2023,167:107418. [121] WEI J,HE W,LIN C,et al. Optimizing process parameters of in-situ laser assisted cutting of glass- ceramic by applying hybrid machine learning models[J]. Advanced Engineering Informatics,2024,62:102590. [122] CHEN Y,HU Z,YU Y,et al. Processing and machining mechanism of ultrasonic vibration-assisted grinding on sapphire[J]. Materials Science in Semiconductor Processing,2022,142:106470. [123] NAIR A R,PAUL L. Advancements in abrasive electrical discharge grinding (AEDG):A review[J]. Materials Today:Proceedings,2023,72:2897-2903. [124] KARIMI K,FARDOOST A,MHATRE N,et al. A Thorough review of emerging technologies in micro-and nanochannel fabrication:Limitations,applications,and comparison[J]. Micromachines-Basel,2024,15(10):1274. [125] MANDAL R,CHOWDHURY K,HALDER S. 4.32- Focused ion beam technique for micro/nanoscale fabrication:Progress over the last decade [M]. HASHMI S. Comprehensive Materials Processing (Second Edition). Oxford:Elsevier,2024. |
[1] | 程军, 朱煜龙, 汪步云, 梁艺, 许德章, 刘蒙蒙, 刘有余. 基于改进迁移学习的CFRP缺陷涡流检测与识别[J]. 机械工程学报, 2025, 61(6): 53-65. |
[2] | 王帅帅, 段振景, 刘吉宇, 李育恒, 王梓恒, 周瑜阳, 刘新, 宋金龙, 孙晶. 冷等离子体耦合微量润滑微铣削CFRP加工性能与机理研究[J]. 机械工程学报, 2024, 60(9): 338-350. |
[3] | 余海燕, 贺宏伟, 邢萍. 考虑不同刚度退化模式的碳纤维增强复合材料失效模型开发[J]. 机械工程学报, 2024, 60(2): 197-208. |
[4] | 成焕波, 郭立军, 周金虎, 王华锋, 汤明喜. 再生碳纤维回收利用及其增材制造复合材料性能评价[J]. 机械工程学报, 2023, 59(7): 375-388. |
[5] | 张涵寓, 宋周洲, 刘钊, 朱平. 碳纤维复合材料与铝合金胶铆混合连接力学性能可靠性研究[J]. 机械工程学报, 2023, 59(24): 334-343. |
[6] | 贾振元, 付饶, 王福吉. 碳纤维复合材料构件加工技术进展[J]. 机械工程学报, 2023, 59(19): 348-374. |
[7] | 张修峰, 邵国栋, 刘传成, 史振宇, 邹斌, 王继来, 张成鹏. 碳化硅陶瓷基复合材料常用的特种加工技术:综述[J]. 机械工程学报, 2023, 59(1): 199-218. |
[8] | 程军, 游勇, 汪步云, 许德章, 余成, 杨继全. 基于空频去混叠的CFRP材料纤维纹路涡流成像[J]. 机械工程学报, 2022, 58(4): 14-21. |
[9] | 罗忠兵, 李飞龙, 苏慧敏, 曹欢庆, 林莉. CFRP复杂几何结构超声表面契合法缺陷检测[J]. 机械工程学报, 2022, 58(20): 312-318. |
[10] | 程军, 徐帅, 汪步云, 许德章, 杨继全, 裘进浩. 一种自调零平切型电涡流探头及其在碳纤维复合材料细观成像中的应用[J]. 机械工程学报, 2021, 57(4): 27-35. |
[11] | 许灿, 朱平, 刘钊. 平纹机织碳纤维复合材料多尺度随机力学性能层次敏感性[J]. 机械工程学报, 2021, 57(14): 213-222. |
[12] | 安华, 王喆, 王国锋, 宋庆月, 刘峰, 钟才川. 复合材料钻削表面粗糙度在线监测与加工参数自适应优化[J]. 机械工程学报, 2020, 56(2): 27-34,42. |
[13] | 王福吉, 王东, 殷俊伟, 杨帆, 赵猛, 王泽刚. CFRP复合材料铣削表层损伤形成机制分析[J]. 机械工程学报, 2019, 55(13): 195-204. |
[14] | 庄蔚敏, 王楠, 吴迪, 武世杰, 敖文宏, 刘西洋. 碳纤维复合材料层合板三点弯曲损伤仿真研究[J]. 机械工程学报, 2019, 55(10): 109-114. |
[15] | 王福吉, 殷俊伟, 贾振元, 马建伟, 徐震宇, 王东. CFRP复合材料铣削力、温度及表层损伤分析[J]. 机械工程学报, 2018, 54(3): 186-195. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||