机械工程学报 ›› 2023, Vol. 59 ›› Issue (1): 199-218.doi: 10.3901/JME.2023.01.199
张修峰1, 邵国栋2,3, 刘传成1, 史振宇2,3, 邹斌2,3, 王继来2,3, 张成鹏2,3
收稿日期:
2021-12-27
修回日期:
2022-06-11
出版日期:
2023-01-05
发布日期:
2023-03-30
通讯作者:
史振宇(通信作者),女,1984年出生,教授,博士研究生导师。主要研究方向为复合材料加工。E-mail:shizhenyu@sdu.edu.cn
作者简介:
张修峰,男,1970年出生,正高级工程师。主要研究方向为冲击地压防治技术。E-mail:zhangxiufeng@shandong-energy.com
基金资助:
ZHANG Xiufeng1, SHAO Guodong2,3, LIU Chuancheng1, SHI Zhenyu2,3, ZOU Bin2,3, WANG Jilai2,3, ZHANG Chengpeng2,3
Received:
2021-12-27
Revised:
2022-06-11
Online:
2023-01-05
Published:
2023-03-30
摘要: 碳化硅陶瓷基复合材料(SiC-CMC)具有高硬度、高强度、耐高温、耐腐蚀等诸多优点,在航空航天、核工业、刹车系统中表现出巨大的应用潜力。然而,SiC-CMC各向异性、不均质性、硬脆性的特点,使加工变得十分困难。传统加工方法存在加工表面质量难以控制、刀具磨损严重、加工效率极低的问题。为了解决上述问题,特种加工技术被用来尝试加工SiC-CMC。不过,特种加工技术种类众多,涉及的知识面比传统加工技术多、广、杂,选择工程实用价值更高和基础性更强的激光加工、磨粒水射流加工、电火花加工三个方面展开综述。首先介绍了三种特种加工技术存在的问题,然后综述了解决问题的方法,最后比较了三者之间的优劣势并得出结论:特种加工技术具有各自优势,激光加工适合加工微孔、微槽等微织构;磨粒水射流加工具有更高的加工效率,且能加工大型复杂构件;电火花加工设备投资低,擅长加工薄板型构件和深腔凹槽。特种加工技术既不相互排斥,也不能相互代替,而应该相辅相成,发挥各自的优势,以高效率制备高精密的复杂构件。
中图分类号:
张修峰, 邵国栋, 刘传成, 史振宇, 邹斌, 王继来, 张成鹏. 碳化硅陶瓷基复合材料常用的特种加工技术:综述[J]. 机械工程学报, 2023, 59(1): 199-218.
ZHANG Xiufeng, SHAO Guodong, LIU Chuancheng, SHI Zhenyu, ZOU Bin, WANG Jilai, ZHANG Chengpeng. Special Processing Techniques Commonly Used For Silicon Carbide Ceramic-Based Composites: Review[J]. Journal of Mechanical Engineering, 2023, 59(1): 199-218.
[1] BANSAL N. Handbook of ceramic composites[M]. Boston:Kluwer Academic Publishers, 2005. [2] ARAI, YUTARO, RYO Inoue, et al. Carbon fiber reinforced ultra-high temperature ceramic matrix composites:A review[J]. Ceramics International, 2019, 45(12):14481-14489. [3] AN Qinglong, CHEN Jie, MING Weiwei. Machining of SiC ceramic matrix composites:A review[J]. Chinese Journal of Aeronautics, 2020, 34(4):540-567. [4] 杨甜甜, 张典堂, 邱海鹏, 等. SiCf/SiC纺织复合材料细观结构及力学性能研究进展[J]. 航空材料学报, 2020, 40(5):1-12. YANG Tiantian, ZHANG Diantang, QIU Haipeng, et al. Progress on fine structure and mechanical properties of SiCf/SiC textile composites[J]. Journal of Aviation Materials, 2020, 40(05):1-12. [5] 高希光, 韩栋, 宋迎东, 等. 陶瓷基复合材料结构的动力学强度设计方法:研究现状及展望[J]. 机械工程学报, 2021, 57(16):235-247. GAO Xiguang, HAN Dong, SONG Yingdong, et al. Design method of dynamic strength of ceramic matrix composite structure:Research status and prospect[J]. Journal of Mechanical Engineering, 2021, 57(16):235-247. [6] EVANS A G, ZOK F W. The physics and mechanics of fibre-reinforced brittle matrix composites[J]. Journal of Materials Science, 2004, 29(15):3857-3896. [7] NAKANO K, KAMIYA, OGAWA A, et al. Fabrication and mechanical properties of carbon fiber reinforced silicon carbide composites[J]. Nihon Seramikkusu Kyōkai Gakujutsu Ronbunshi, 1992, 100(1160):472-475,. [8] LIU Qiaomu, HUANG Shunzhou, HE Aijie. Application requirements and challenges of CMC-SiC composites on aero-engine[J]. Journal of Materials Engineering, 2019, 47(2):1. [9] 邹豪, 王宇, 刘刚, 等. 碳化硅纤维增韧SiC-CMC的发展现状及其在航空发动机上的应用[J]. 航空制造技术, 2017, (15):76-84, 91. ZOU Hao, WANG Yu, LIU Gang, et al. Development status of SiC fiber reinforced SiC ceramic matrix composites and their application in aero-engine[J]. Aeronautical Manufacturing Technology, 2017, (15):76-84, 91. [10] 黄红岩, 苏力军, 雷朝帅, 等. 可重复使用热防护材料应用与研究进展[J]. 航空学报, 2020, 41(12):6-40. HUANG Hongyan, SU Lijun, LEI Chaoshuai, et al. Application and research progress of reusable thermal protective materials[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12):6-40. [11] MAHAJAN, YASHWANT R, ROY J. Handbook of advanced ceramics and composites:Defense, security, aerospace and energy applications[M]. Cham:Springer International Publishing AG, 2020. [12] FAN Shangwu, ZHANG Litong, CHENG Laifei, et al. Effect of braking pressure and braking speed on the tribological properties of C/SiC aircraft brake materials[J]. Composites Science and Technology, 2010, 70(6):959-965. [13] DIAZ O G, GARCIA L, LIAO L, et al. The new challenges of machining ceramic matrix composites (CMCs):Review of surface integrity[J]. International Journal of Machine Tools & Manufacture, 2019, 139:24-36. [14] R TETI. Machining of composite materials[J]. CIRP Annals, 2002, 51(2):611-634. [15] RAYAT M S, GRILL S S, RUPINDER S, et al. Fabrication and machining of ceramic composites-A review on current scenario[J]. Materials and Manufacturing Processes, 2017, 32(13):1451-1474. [16] DIAZ O G, AXINTE D A. Towards understanding the cutting and fracture mechanism in Ceramic Matrix Composites[J]. International Journal of Machine Tools & Manufacture, 2017, 118-119:12-25. [17] 殷景飞, 徐九华, 丁文锋, 等. SiCf/SiC陶瓷基复合材料单颗磨粒磨削试验研究[J]. 中国机械工程, 2022, 33(15):1765-1771. YIN Jingfei, XU Jiuhua, DING Wenfeng, et al. Study of SiCf/SiC ceramic matrix composite[J]. China Mechanical Engineering, 2022, 33(15):1765-1771. [18] LAWN B R, EVANS A G, MARSHALL D B. Elastic/Plastic indentation damage in ceramics:the median/radial crack system[J]. Journal of the American Ceramic Society, 1980, 63(9-10):574-581. [19] MARSHALL D B, LAWN B R, EVANS A G. Elastic/Plastic indentation damage in ceramics:the lateral crack system[J]. Journal of the American Ceramic Society, 1982, 65(11):561-566. [20] BLACKLEY W S, SCATTERGOOD R O. Ductile-regime machining model for diamond turning of brittle materials[J]. Precision Engineering, 1991, 13(2):95-103. [21] 史振宇. 基于最小切除厚度的微切削加工机理研究[D]. 济南:山东大学, 2011. SHI Zhenyu. Research on micro-cutting mechanism based on minimum cutting thickness[D]. Jinan:Shandong University, 2011. [22] LI Yuanchen, GE Xiang, WANG Hui, et al. Study of material removal mechanisms in grinding of C/SiC composites via single-abrasive scratch tests[J]. Ceramics International, 2019, 45(4):4729-4738. [23] ARIF M, ZHANG Xianquan, RAHMAN M, et al. A predictive model of the critical undeformed chip thickness for ductile-brittle transition in nano-machining of brittle materials[J]. International Journal of Machine Tools & Manufacture, 2013, 64:114-122. [24] ZONG W J, CAO Z M, HE C, et al.. Critical undeformed chip thickness of brittle materials in single point diamond turning[J]. International Journal of Advanced Manufacturing Technology, 2015, 81(5):975-984. [25] 王晶, 成来飞, 刘永胜, 等. SiC-CMC加工技术研究进展[J]. 航空制造技术, 2016, (15):50-56. WANG Jing, CHENG Laifei, LIU Yongsheng, et al. Research progress on fabrication technology of silicon carbide ceramic matrix composites[J]. Aeronautical Manufacturing Technology, 2016, (15):50-56(in Chinese). [26] XING Youqiang, DENG Jianxin, ZHANG Guodong, et al. Assessment in drilling of C/C-SiC composites using brazed diamond drills[J]. Journal of Manufacturing Processes, 2017, 26:31-43. [27] ZOU Fan, CHEN Jie, AN Qingling, et al. Influences of clearance angle and point angle on drilling performance of 2D Cf/SiC composites using polycrystalline diamond tools[J]. Ceramics International, 2020, 46(4):4371-4380. [28] CHEN Jie, AN Qinglong, MING Weiwei, et al. Hole exit quality and machined surface integrity of 2D Cf/SiC composites drilled by PCD tools[J]. Journal of the European Ceramic Society, 2019, 39(14):4000-4010. [29] 谢巍杰, 邱海鹏, 陈明伟. SiCf/SiC陶瓷基复合材料制孔工艺[J]. 宇航材料工艺, 2016, 46(5):50-53. XIE Weijie, QIU Haipeng, CHEN Mingwei. Drilling process of SiC_f/SiC ceramic matrix composites[J]. Astronautical Materials & Technology, 2016, 46(5):50-53. [30] DIAZ O G, AXINTE D A, NOVOVIC D. Probabilistic modelling of tool unbalance during cutting of hard-heterogeneous materials:A case study in ceramic matrix composites(CMCs)[J]. Composites. Part B, Engineering, 2018, 148:217-226, 2018. [31] DIAZ O G, AXINTE D A, BUTLER S P, et al. On understanding the microstructure of SiC/SiC Ceramic Matrix Composites (CMCs) after a material removal process[J]. Materials Science & Engineering. A, Structural Materials:Properties, Microstructure and Processing, 2019, 743:1-11. [32] 张瑾瑜, 王宁, 赵建设, 等. C/SiC复合材料螺旋铣削与钻削制孔效果对比[J]. 宇航材料工艺, 2020, 50(5):39-43. ZHANG Jinyu, WANG Ning, ZHAO Jianshe, et al. Comparison of spiral milling and drilling of C/SiC composite[J]. Aerospace Material Process, 2020, 50(5):39-43. [33] HU Meng, MING Weiwei, AN Qinglong, et al. Experimental study on milling performance of 2D C/SiC composites using polycrystalline diamond tools[J]. Ceramics International, 2019, 45(8):10581-10588. [34] 陈杰, 安庆龙, 明伟伟, 等. PCD刀具几何参数对Cf/SiC复合材料铣削质量的影响[J]. 工具技术, 2020, 54(10):3-8. CHEN Jie, AN Qinglong, MING Weiwei, et al. PCD effect of tool geometry parameters on milling quality of Cf/SiC composites[J].] Tool Technology, 2020, 54(10):3-8. [35] TASHIRO T, FUJIWARA J, TAKENAKA Y. Grinding of C/C-SiC composite in dry method[M]. London:Springer, 2007:351-352. [36] DU Jinguang, MING Wuyi, MA Jun, et al. New observations of the fiber orientations effect on machinability in grinding of C/SiC ceramic matrix composite[J]. Ceramics International, 2018, 44(12):13916-13928. [37] 丁凯, 傅玉灿, 苏宏华, 等. C/SiC复合材料组织对磨削力与加工表面质量的影响[J]. 中国机械工程, 2013, 24(14):1886-1890. DING Kai, FU Yucan, SU Honghua, et al. The influence of C/SiC composites structure on grinding force and surface quality[J]. China Mechanical Engineering, 2013, 24(14):1886-1890. [38] 屈硕硕, 巩亚东, 杨玉莹, 等. 单向碳纤维增强陶瓷基复合材料磨削表面质量研究[J]. 东北大学学报, 2019, 40(9):1310-1315. QU Shuoshuo, GONG Yadong, YANG Yuying, et al. Grinding surface quality of unidirectional carbon fiber reinforced ceramic matrix composites[J]. Study Journal of Northeast University, 2019, 40(9):1310-1315. [39] 张立峰, 王盛, 李战, 等. 纤维方向对单向C/SiC复合材料磨削加工性能的影响[J]. 中国机械工程, 2020, 31(3):373-377. ZHANG Lifeng, WANG Sheng, LI Zhan, et al. Tthe influence of fiber direction on grinding properties of unidirectional C/siC composites[J]. China Mechanical Engineering, 2020, 31(3):373-377. [40] YANG Yuying, QU Shuoshuo, GONG Yadong. Investigating the grinding performance of unidirectional and 2.5D C/SiCs[J]. Ceramics International, 2021, 47(4):5123-5132. [41] GARCIA L G, AXINTE D, NOVOVIC D. Influence of grit geometry and fibre orientation on the abrasive material removal mechanisms of SiC/SiC Ceramic Matrix Composites (CMCs)[J]. International Journal of Machine Tools & Manufacture, 2020, 157:103580. [42] ESMAEILI H, ADIBI H, REZAEI S M. An efficient strategy for grinding carbon fiber-reinforced silicon carbide composite using minimum quantity lubricant[J]. Ceramics International, 2019, 45(8):10852-10864. [43] QU Shuoshuo, GONG Yadong, YANG Yuying, et al. Investigating minimum quantity lubrication in unidirectional Cf/SiC composite grinding[J]. Ceramics International, 2020, 46(3):3582-3591. [44] ZHANG Lifeng, REN Chengzu, JI Chunhui, et al. Effect of fiber orientations on surface grinding process of unidirectional C/SiC composites[J]. Applied Surface Science, 2016, 366:424-431. [45] TAWAKOLI T, AZARHOUSHANG B. Intermittent grinding of ceramic matrix composites (CMCs) utilizing a developed segmented wheel[J]. International Journal of Machine Tools & Manufacture, 2011, 51(2):112-119. [46] LIU Qiong, HUANG Guoqin, XU Xipeng, et al. A study on the surface grinding of 2D C/SiC composites[J]. International Journal of Advanced Manufacturing Technology, 2017, 93(5):1595-1603. [47] QU Shuoshuo, GONG Yadong, YANG Yuying, et al. Surface topography and roughness of silicon carbide ceramic matrix composites[J]. Ceramics International, 2018, 44(12):14742-14753. [48] TETI R. Machining of Composite Materials[J]. CIRP Annals, 2002, 51(2):611-634. [49] LIU Defu, TANG Yongjun. A review of mechanical drilling for composite laminates[J]. Composite Structures, 2012, 94(4):1265-1279. [50] DANDEKAR C R, SHIN Y C. Modeling of machining of composite materials:A review[J]. International Journal of Machine Tools & Manufacture, 2012, 57:102-121. [51] RAYAT M. S, GRILL S S, SINGH R, et al. Fabrication and machining of ceramic composites-A review on current scenario[J]. Materials and Manufacturing Processes, 2017, 32(13):1451-1474. [52] DIAZ O G, GARCIA L G, LIAO Zhirong, et al. The new challenges of machining Ceramic Matrix Composites (CMCs):Review of surface integrity[J]. International Journal of Machine Tools & Manufacture, 2019, 139:24-36. [53] LV Xinyuan, YE Fang, CHENG Lafei, et al. Fabrication of SiC whisker-reinforced SiC ceramic matrix composites based on 3D printing and chemical vapor infiltration technology[J]. Journal of the European Ceramic Society, 2019, 39(11):3380-3386. [54] ZHU Wei, FU Hua, XU Zhongfeng, et al. Fabrication and characterization of carbon fiber reinforced SiC ceramic matrix composites based on 3D printing technology[J]. Journal of the European Ceramic Society, 2018, 38(14):4604-4613. [55] 王欢. 快速成型SiC陶瓷基复合材料及其性能研究[D].西安:西安理工大学, 2019. WANG Huan. Rapid prototyping of SiC ceramic matrix composites and their properties[J]. Xi'an:Xi'an University of Technology, 2019. [56] 徐俊杰. SiCf/SiC复合材料的水导激光加工工艺基础研究[D]. 哈尔滨:哈尔滨工业大学, 2019. XU Junjie. Laser fabrication of SiC/SiC composites by water guided laser[J]. Harbin:Harbin Institute of Technology, 2019. [57] XU Liang, ZHAO Guolong, ZHANG Jianqiang, et al. Study on low temperature milling of carbon fiber reinforced SiC matrix composites[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2020, 37(3):424-433. [58] 徐亮, 王凯, 王新永, 等. Cf/SiC复合材料低温铣削工艺优化研究[J]. 机械制造与自动化, 2021, 50(1):36-40. XU Liang, WANG Kai, WANG Xinyong, et al. Study on optimization of low temperature milling process of Cf/SiC composites[J]. Mechanical Manufacturing and Automation, 2021, 50(1):36-40. [59] KIM K, KIM J, CHOI J, et al. A review on research and development of laser assisted turning[J]. International Journal of Precision Engineering and Manufacturing, 2011, 12(4):753-759. [60] ROZZI J C, BARTON M D. The laser-assisted edge milling of ceramic matrix composites[C]//Proceedings of the ASME International Manufacturing Science and Engineering Conference 2009, 2009. [61] RAO Xiaoshuang, ZHANG Feihu, LU Yanjun, et al. Analysis of diamond wheel wear and surface integrity in laser-assisted grinding of RB-SiC ceramics[J]. Ceramics International, 2019, 45(18):24355-24364. [62] ZHOU Kun, XU Jiayu, XIAO Guijian, et al. A novel low-damage and low-abrasive wear processing method of Cf/SiC ceramic matrix composites:Laser-induced ablation-assisted grinding[J]. Journal of Materials Processing Technology, 2022, 302. [63] CHEN Jie, MING Weiwei, AN Qinglong, et al. Mechanism and feasibility of ultrasonic-assisted milling to improve the machined surface quality of 2D Cf/SiC composites[J]. Ceramics International, 2020, 46(10):15122-15136. [64] HOCHENG H, TAI N H, LIU C S. Assessment of ultrasonic drilling of C/SiC composite material[J]. Composites. Part A, Applied Science and Manufacturing, 2000, 31(2):133-142. [65] DING Kai, FU Yucan, SU Honghua, et al. Study on surface/subsurface breakage in ultrasonic assisted grinding of C/SiC composites[J]. International Journal of Advanced Manufacturing Technology, 2017, 91(9):3095-3105. [66] 康仁科, 赵凡, 鲍岩, 等. 超声辅助磨削SiCf/SiC陶瓷基复合材料[J]. 金刚石与磨料磨具工程, 2019, 39(04):85-91. KANG Renke, ZHAO Fan, BAO Yan, et al. Ultrasonic assisted grinding of SiCf/SiC ceramic matrix composites[J]. Diamond & Abrasives Engineering, 2019, 39(04):85-91. [67] YOU Kaiyuan, YAN Guangpeng, LUO Xichun, et al. Advances in laser assisted machining of hard and brittle materials[J]. Journal of Manufacturing Processes, 2020, 58:677-692. [68] 翟兆阳, 梅雪松, 王文君, 等. 碳化硅陶瓷基复合材料激光刻蚀技术研究进展[J]. 中国激光, 2020, 47(6):24-34. ZHAI Zhaoyang, MEI Xuesong, WANG Wenjun, et al. Progress on laser etching technology of silicon carbide ceramic matrix composite materials[J]. China laser, 2020, 47(6):24-34. [69] 樊华. 基于飞秒激光光场调制技术的硬脆材料微纳加工技术研究[D]. 长春:吉林大学, 2020. FAN Hua. Research on micro/nano machining technology of hard and brittle-based on femtosecond laser field modulation technology[D]. Changchun:Jilin University, 2020. [70] TUERSLEY I P, HOULT T P, PASHBY I R. The processing of SiC/SiC ceramic matrix composites using a pulsed Nd-YAG laser:Part I:Optimisation of pulse parameters[J]. Journal of Materials Science, 1998, 33(4):955-961. [71] WANG Chunhui, ZHANG Litong, LIU Yongsheng, et al. Ultra-short pulse laser deep drilling of C/SiC composites in air[J]. Applied Physics A, 2013, 111(4):1213-1219. [72] 刘瑞军, 桓恒, 赵晨曦, 等. 超短脉冲激光加工陶瓷基复合材料制孔研究[J]. 电加工与模具, 2019, (2):55-58. LIU Ruijun, HUAN Heng, ZHAO Chenxi, et al. A study on poremaking of ceramic matrix composites by ultra-short pulse laser processing[J]. Electrical Processing and Mould, 2019, (2):55-58. [73] 蔡敏, 张晓兵, 张伟, 等. SiC/SiC复合材料纳秒激光和皮秒激光制孔质量的对比研究[J]. 航空制造技术, 2016, (19):52-55. CAI Min, ZHANG Xiaobing, ZHANG Wei, et al. Comparative study on the pore quality of nanosecond laser and picosecond laser for SiC/SiC composites[J]. and Aviation Manufacturing Technology, 2016, (19):52-55. [74] LIU Yanchi, WU Chenwu, HUANG Yihui, et al. Interlaminar damage of carbon fiber reinforced polymer composite laminate under continuous wave laser irradiation[J]. Optics and Lasers in Engineering, 2017, 88:91-101. [75] ZHANG Ruoheng, LI Weinan, LIU Yongsheng, et al. Machining parameter optimization of C/SiC composites using high power picosecond laser[J]. Applied Surface Science, 2015, 330:321-331. [76] ZHAI Zhaoyang, WANG Weijun, ZHAO Jie, et al. Influence of surface morphology on processing of C/SiC composites via femtosecond laser[J]. Composites Part A, Applied Science and Manufacturing, 2017, 102:117-125. [77] LIU Yongsheng, WANG Chunhui, LI Weinan, et al. Effect of energy density and feeding speed on micro-hole drilling in C/SiC composites by picosecond laser[J]. Journal of Materials Processing Technology, 2014, 214(12):3131-3140. [78] ZHAI Zhaoyang, WANG Wenjun, MEI Xuesong, et al. Effect of the surface microstructure ablated by femtosecond laser on the bonding strength of EBCs for SiC/SiC composites[J]. Optics Communications, 2018, 424:137-144. [79] LI Weinan, ZHANG Ruoheng, LIU Yongheng, et al. Effect of different parameters on machining of SiC/SiC composites via pico-second laser[J]. Applied Surface Science, 2016, 364:378-387,. [80] YALUKOVA O, SARADY I. Investigation of interaction mechanisms in laser drilling of thermoplastic and thermoset polymers using different wavelengths[J]. Composites Science and Technology, 2006, 66(10):1289-1296. [81] NEGARESTANI R. Nano-second pulsed DPSS Nd:YAG laser cutting of CFRP composites with mixed reactive and inert gases[J]. International Journal of Advanced Manufacturing Technology, 2010, 49(5):553-566. [82] 焦浩文, 陈冰, 罗良, 等. 纳秒激光加工2.5维Cf/SiC复合材料的烧蚀孔洞特征[J].中国机械工程, 2020, 31(8):983-990. JIAO Haowen, CHEN Bing, LUO Liang, et al. Characteristics of ablation holes in 2.5-dimensional Cf/SiC composites by nanosecond laser processing[J]. China Mechanical Engineering, 2020, 31(8):983-990. [83] MELENTIEV R, FANG Fengzhou. Recent advances and challenges of abrasive jet machining[J]. CIRP Journal of Manufacturing Science and Technology, 2018, 22:1-20. [84] NATARAJAN Y. Abrasive water jet machining process:A state of art of review[J]. Journal of Manufacturing Processes, 2020, 49:271-322. [85] 任云明. 磨料水射流加工结构陶瓷及陶瓷基复合材料的研究[J]. 内燃机与配件, 2018, (15):116-118. REN Yunming. Study on abrasive waterjet processing of structural ceramics and ceramic matrix composites[J]. Internal Combustion Engines and Accessories, 2018, (15):116-118. [86] HASHISH M. Turning with abrasive-waterjets-a first investigation[J]. Journal of Engineering for Industry, 1987, 9(4):281-290. [87] DENG Jianxin, FENG Yihua, DING Zeliang, et al.. Wear behavior of ceramic nozzles in sand blasting treatments[J]. Journal of the European Ceramic Society, 2003, 23(2):323-329. [88] DENG Jianxin, WU Fengfang, ZHAO Jinlong. Wear mechanisms of gradient ceramic nozzles in abrasive air-jet machining[J]. International Journal of Machine Tools & Manufacture, 2007, 47(12):2031-2039. [89] DENG Jianxin, LIU Lili, DING Mingwei. Gradient structures in ceramic nozzles for improved erosion wear resistance[J]. Ceramics International, 2007, 33(7):1255-1261. [90] DENG Jianxin, LIU Lili, DING Mingwei. Effect of residual stresses on the erosion wear of laminated ceramic nozzles[J]. Materials Characterization, 2008, 59(1):1-8. [91] HASHISH M., KOTCHON A, RAMULU M. Status of AWJ machining of CMCS and hard materials[C]//INTERTECH 2015, Indianapolis, India. [92] HASHISH M. Observations of wear of abrasive-waterjet nozzle materials[J]. Journal of Tribology, 1994, 116(3):439-444. [93] NANDURI M, TAGGART D G, KIM T J. The effects of system and geometric parameters on abrasive water jet nozzle wear[J]. International Journal of Machine Tools & Manufacture, 2002, 42(5):615-623. [94] DENG Jianxin. Erosion wear of boron carbide ceramic nozzles by abrasive air-jets[J]. Materials Science & Engineering. A, Structural Materials:Properties, Microstructure and Processing, 2005, 408(1):227-233. [95] RAMULU M, JENKINS M G, GUO Z. Abrasive water jet machining mechanisms in continuous-fiber ceramic composites[J]. Journal of Composites Technology & Research, 2001, 23(2):82-91. [96] DENG Jianxin, ZHANG Xihua, NIU Pingzhang, et al. Wear of ceramic nozzles by dry sand blasting[J]. Tribology International, 2006, 39(3):274-280. [97] KORDONSKI W, SHOREY A. Magnetorheological (MR) jet finishing technology[J]. Journal of Intelligent Material Systems and Structures, 2007, 18(12):1127-1130. [98] JHA S, JAIN V K. Design and development of the magnetorheological abrasive flow finishing (MRAFF) process[J]. International Journal of Machine Tools & Manufacture, 2004, 44(10):1019-1029. [99] TRICARD M, KORDONSKI W, SHOREY A B, et al. Magnetorheological jet finishing of conformal, freeform and steep concave optics[J]. CIRP Annals, 2006, 55(1):309-312. [100] KORDONSKI W, SHOREY A B, SEKERES A. New magnetically assisted finishing method:Material removal with magnetorheological fluid jet[C]//Proceedings of SPIE, 2004. [101] KORDONSKI W, SHOREY A B, TRICARD M. Jet-induced high-precision finishing of challenging optics[C]//Proceedings of SPIE, 2005. [102] PACHAURY Y, TANDON P. An overview of electric discharge machining of ceramics and ceramic based composites[J]. Journal of Manufacturing Processes, 2017, 25:369-390. [103] FUKUZAWA Y, MOHRI N, GOTOH H, et al. Three-dimensional machining of insulating ceramics materials with electrical discharge machining[J]. Transactions of Nonferrous Metals Society of China, 2009, 19(z1):150-156. [104] 魏臣隽, 刘剑, 许正昊, 等. 纤维强化陶瓷复合材料的电火花加工[J]. 电加工与模具, 2015, (1):25-29, 33. WEI Chenjun, LIU Jian, XU Zhenghao, et al. EDM for fiber reinforced ceramic composites[J]. Electrical Machining and Mould, 2015, (1):25-29, 33. [105] HOCHENG H, GUU Y H, TAI N H. The feasibility analysis of electrical-discharge machining of carbon-carbon composites[J]. Materials and Manufacturing Processes, 1998, 13(1):117-132. [106] HE Wenbin, HE Shaotai, DU Jinguang, et al. Fiber orientations effect on process performance for wire cut electrical discharge machining (WEDM) of 2D C/SiC composite[J]. International Journal of Advanced Manufacturing Technology, 2019, 102(1):507-518. [107] YUE Xiaoming, LI Qi, YANG Xiaodong. Influence of thermal stress on material removal of Cf/SiC composite in EDM[J]. Ceramics International, 2020, 46(6):7998-8009. [108] KÖNIG W, DAUW D F, LEVY G, et al. EDM-future steps towards the machining of ceramics[J]. CIRP Annals, 1988, 37(2):623-631. [109] CALIGNANO F, DENTI L, BASSOLI E, et al. Studies on electrodischarge drilling of an Al2O3-TiC composite[J]. International Journal of Advanced Manufacturing Technology, 2013, 66(9):1757-1768. [110] LIEW P J, YAN J, KURIYAGAWA T. Carbon nanofiber assisted micro electro discharge machining of reaction-bonded silicon carbide[J]. Journal of Materials Processing Technology, 2013, 213(7):1076-1087. [111] LUIS C J, PUERTAS I, VILLA G. Material removal rate and electrode wear study on the EDM of silicon carbide[J]. Journal of Materials Processing Technology, 2005, 164-165:889-896. [112] CLIJSTERS S, LIU K, REYNAERTS D, et al. EDM technology and strategy development for the manufacturing of complex parts in SiSiC[J]. Journal of Materials Processing Technology, 2010, 210(4):631-641. [113] WEI Chenjun, ZHAO Li, HU Dejin, et al. Electrical discharge machining of ceramic matrix composites with ceramic fiber reinforcements[J]. International Journal of Advanced Manufacturing Technology, 2013, 64(1):187-194. [114] 马长进. ZrB_2-SiC陶瓷电火花单脉冲放电蚀除凹坑仿真与加工试验研究[D]. 哈尔滨:哈尔滨工业大学, 2016. MA Changjin. Simulation and Experimental Study on Machining of ZrB_2-SiC Ceramics by EDM Monopulse Erosion[D]. Harbin:Harbin Institute of Technology, 2016. [115] TSUTSUMI C, OKANO K, SUTO T. High quality machining of ceramics[J]. Journal of Materials Processing Technology, 1993, 37(1):639-654. [116] 郭永丰, 黄荣和, 李常伟, 等. 非导电材料的电化学电火花复合加工工艺研究[J]. 电加工, 1998(6):23-25. GUO Yongfeng, HUANG Ronghe, LI Changwei, et al. Research on electrochemical edm composite machining technology of non-conductive materials[J]. Electromachining, 1998(6):23-25. [117] FUKUZAWA Y, TANI T, IWANE E, et al. New machining method for insulating ceramics with an electrical discharge phenomenon[J]. Nihon Seramikkusu Kyōkai Gakujutsu Ronbunshi, 1995, 103(1202):1000-1005. [118] MOHRI N, FUKUZAWA Y, TANI T, et al. Assisting electrode method for machining insulating ceramics[J]. CIRP Annals, 1996, 45(1):201-204. [119] HANAOKA D, FUKUZAWA Y, YAMASHITA K. Research of large-area electrical discharge machining for insulating Si3N4 ceramics with the assisting electrode method[C]//Advanced Materials Research, 2014. [120] ZELLER F, HOSEL T, MULLER C, et al. Microstructuring of non-conductive silicon carbide by electrical discharge machining[J]. Microsyste Technologies, 2014, 20(10):1875-1880. [121] FUKUZAWA Y. Mechanical strength of the wire EDMed insulating ZrO2ceramics by assisting electrode method[C]//Proceedings of the 15th International Symposium on Electromachining, ISEM, 2007. [122] GEORGE P M, RAGHUNATH B K, MANOCHA L M, et al. EDM machining of carbon-carbon composite-a Taguchi approach[J]. Journal of Materials Processing Technology, 2004, 145(1):66-71. [123] CHIANG K. Modeling and analysis of the effects of machining parameters on the performance characteristics in the EDM process of Al2O3+TiC mixed ceramic[J]. International Journal of Advanced Manufacturing Technology, 2008, 37(5-6):523-533. [124] GUU Y H, HOCHENG H, TAI N H, et al. Effect of electrical discharge machining on the characteristics of carbon fiber reinforced carbon composites[J]. Journal of Materials Science, 2001, 36(8):2037-2043. [125] LAUWERS B, KRUTH J P, LIU W, et al. Investigation of material removal mechanisms in EDM of composite ceramic materials[J]. Journal of Materials Processing Technology, 2004, 149(1-3):347-352. [126] PATEL K M, PANDEY P M, RAO P V. Optimisation of process parameters for multi-performance characteristics in EDM of Al2O3 ceramic composite[J]. International Journal of Advanced Manufacturing Technology, 2010, 47(9-12):1137-1147,. [127] PATEL K M, PANDEY P M, RAO P V. Determination of an optimum parametric combination using a surface roughness prediction model for EDM of Al2O3/SiCw/TiC ceramic composite[J]. Materials and Manufacturing Processes, 2009, 24(6):675-682. [128] SATYARTHI M K, PANDEY P M. Comparison of edg diamond grinding and EDM processing of conductive alumina ceramic composite[J]. Materials and Manufacturing Processes, 2013, 28(4):369-374. |
[1] | 董志刚, 王中旺, 冉乙川, 鲍岩, 康仁科. 碳纤维增强陶瓷基复合材料超声振动辅助铣削加工技术的研究进展[J]. 机械工程学报, 2024, 60(9): 26-56. |
[2] | 梁奉爽, 吴明阳, 刘立飞. 基于材料冲击特性的碳化硅超声磨削机理及亚表面损伤特征研究[J]. 机械工程学报, 2024, 60(9): 75-85. |
[3] | 陈钊杰, 谢晋, 刘军汉, 熊长新, 李迪帆. 脉冲放电驱动磨料流辅助磨削单晶碳化硅研究[J]. 机械工程学报, 2024, 60(9): 383-392. |
[4] | 张博楠, 黄辉, 武民. 单晶4H-SiC的摩擦诱导化学机械复合加工(FCMM)实验研究[J]. 机械工程学报, 2024, 60(7): 401-410. |
[5] | 华东鹏, 周青, 王婉, 李硕, 王志军, 王海丰. 碳化硅纳米抛光亚表面损伤机理的分子动力学模拟[J]. 机械工程学报, 2024, 60(5): 231-240. |
[6] | 刘伟, 胡利方, 郑植, 高伟, 丑昭, 成晓, 王勇. 玻璃与碳化硅阳极键合机理及其力学性能研究[J]. 机械工程学报, 2024, 60(16): 151-159. |
[7] | 刘增华, 吴育衡, 王可心, 满润昕, 何存富, 吴斌. 基于太赫兹时域光谱技术的陶瓷基复合材料缺陷检测成像研究[J]. 机械工程学报, 2023, 59(14): 33-42. |
[8] | 戴剑博, 苏宏华, 傅玉灿, 丁文锋, 司垒, 陈佳佳. 磨削速度对碳化硅陶瓷磨削损伤影响机制研究[J]. 机械工程学报, 2022, 58(21): 316-330. |
[9] | 董志刚, 马槐遥, 康仁科, 杨峰, 鲍岩. SiCf/SiC复合材料超声辅助干式侧磨砂轮磨损研究[J]. 机械工程学报, 2022, 58(15): 134-143. |
[10] | 戴剑博, 苏宏华, 王忠宾, 丁文锋, 傅玉灿, 陈佳佳. 多晶碳化硅陶瓷磨削裂纹损伤形成机理研究[J]. 机械工程学报, 2022, 58(13): 307-320. |
[11] | 高希光, 韩栋, 宋迎东, 张盛, 于国强. 陶瓷基复合材料结构的动力学强度设计方法:研究现状及展望[J]. 机械工程学报, 2021, 57(16): 235-247. |
[12] | 曹建国, 张勤俭. 碳化硅陶瓷超声振动辅助磨削材料去除特性研究[J]. 机械工程学报, 2019, 55(13): 205-211. |
[13] | 郑非非, 董志刚, 张嘉桐, 刘津廷, 康仁科. 超声振动对单颗金刚石工具划擦RB-SiC材料去除行为的影响[J]. 机械工程学报, 2019, 55(1): 225-232. |
[14] | 梁志强, 吴立飞, 周天丰, 张素燕, 王秋燕, 焦黎, 王西彬. 金刚石砂轮V形尖端切向磨削修整试验研究[J]. 机械工程学报, 2018, 54(3): 196-202. |
[15] | 倪自丰, 陈国美, 徐来军, 白亚雯, 李庆忠, 赵永武. 不同氧化剂对6H-SiC化学机械抛光的影响[J]. 机械工程学报, 2018, 54(19): 224-231. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||