机械工程学报 ›› 2025, Vol. 61 ›› Issue (3): 197-211.doi: 10.3901/JME.2025.03.197
• 机器人及机构学 • 上一篇
宋光明1,2,3, 郝爽1,2,3, 纪梓潮1,2,3, 张钧奕1,2,3, 宋爱国1,2,3
收稿日期:
2024-01-25
修回日期:
2024-09-10
发布日期:
2025-03-12
作者简介:
宋光明(通信作者),男,1974年出生,博士,教授,博士研究生导师。主要研究方向为飞行机械臂、水下机械臂、基础设施运维机器人等。E-mail:mikesong@seu.edu.cn;郝爽,男,1993年出生,博士研究生。主要研究方向为飞行机械臂、双边遥操作、非线性系统控制等。E-mail:shuanghao@seu.edu.cn;张钧奕,男,1997年出生,博士研究生。主要研究方向为飞行作业机器人、信号处理、非线性系统控制等。E-mail:zhangjy97@seu.edu.cn
基金资助:
SONG Guangming1,2,3, HAO Shuang1,2,3, JI Zichao1,2,3, ZHANG Junyi1,2,3, SONG Aiguo1,2,3
Received:
2024-01-25
Revised:
2024-09-10
Published:
2025-03-12
摘要: 飞行机械臂是由旋翼无人机和机械臂组成的新型飞行机器人系统,兼具无人机的灵活机动能力和机械臂的操作能力,可飞抵高处地点执行运输作业或接触作业任务,具有广阔的应用前景。接触作业型飞行机械臂是油气工业、交通、水利、电力等行业基础设施运维急需的先进技术装备,近十年来一直是机器人与自动化领域的研究热点。梳理分析前人研究,对接触作业型飞行机械臂关键技术进行了研究现状综述。首先,根据末端执行器与作业对象之间的交互特性将飞行机械臂的接触作业模式划分为定点、滑动和干预三大类,并分别进行了介绍。然后,对接触作业型飞行机械臂的机构设计技术进行了阐述,主要包括基于常规多轴无人机、全驱多轴无人机和旋翼组合体等本体平台的典型样机;对接触作业型飞行机械臂的控制方法进行了阐述,主要包括飞行控制、被动柔顺控制、主动柔顺控制以及双边遥操作控制。最后,对接触作业型飞行机械臂关键技术发展趋势进行了展望。
中图分类号:
宋光明, 郝爽, 纪梓潮, 张钧奕, 宋爱国. 接触作业型飞行机械臂研究进展[J]. 机械工程学报, 2025, 61(3): 197-211.
SONG Guangming, HAO Shuang, JI Zichao, ZHANG Junyi, SONG Aiguo. Research Progress of Aerial Manipulators for Contact-based Operations[J]. Journal of Mechanical Engineering, 2025, 61(3): 197-211.
[1] OLLERO A,TOGNON M,SUAREZ A,et al. Past,present,and future of aerial robotic manipulators[J]. IEEE Transactions on Robotics,2022,38(1):626-645. [2] BISCHOFF R,GUHL T. The strategic research agenda for robotics in Europe [Industrial activities][J]. IEEE Robotics & Automation Magazine,2010,17(1):15-16. [3] RUGGIERO F,LIPPIELLO V,OLLERO A. Aerial manipulation:A literature review[J]. IEEE Robotics and Automation Letters,2018,3(3):1957-1964. [4] 杨斌,何玉庆,韩建达,等. 作业型飞行机器人研究现状与展望[J]. 机器人,2015,37(5):628-640. YANG Bin,HE Yuqing,HAN Jianda,et al. Survey on aerial manipulator systems[J]. Robot,2015,37(5):628-640. [5] 钟杭,王耀南,李玲,等. 旋翼飞行机械臂建模及动态重心补偿控制[J]. 控制理论与应用,2016,33(3):311-320. ZHONG Hang,WANG Yaonan,LI Ling,et al. Rotor-flying manipulator modeling and control with dynamic compensation for gravity offset[J]. Control Theory & Applications,2016,33(3):311-320. [6] DING X,GUO P,XU K,et al. A review of aerial manipulation of small-scale rotorcraft unmanned robotic systems[J]. Chinese Journal of Aeronautics,2019,32(1):200-214. [7] 中国工程院全球工程前沿项目组. 全球工程前沿2020[M]. 北京:高等教育出版社,2020. Project Group of Global Engineering Fronts,Chinese Academy of Engineering. Engineering fronts 2020[M]. Beijing:Higher Education Press,2020. [8] 丁希仑,金雪莹. 旋翼无人机交互作业动力学建模研究进展[J]. 航空学报,2022,43(10):526-543. DING Xilun,JIN Xueying. Research progress of rotorcraft UAV interactive manipulation dynamic modeling[J]. Acta Aeronautica et Astronautica Sinica,2022,43(10):526-543. [9] 刘超,张广玉,熊安斌. 旋翼飞行机械臂研究综述[J]. 高技术通讯,2020,30(7):735-747. LIU Chao,ZHANG Guangyu,XIONG Anbin. Review of researches on aerial manipulator[J]. Chinese High Technology Letters,2020,30(7):735-747. [10] 张一博,徐彬,樊伟. 智能空中作业机器人研究进展与展望[J]. 人工智能,2021,23(4):6-16. ZHANG Yibo,XU Bin,FAN Wei. Research progress and prospects of intelligent aerial manipulators[J]. Artificial Intelligence View,2021,23(4):6-16. [11] MENG X,HE Y,HAN J. Survey on aerial manipulator:System,modeling,and control[J]. Robotica,2020,38(7):1288-1317. [12] 王营华,宋光明,刘盛松,等. 一种视觉引导的作业型飞行机器人设计[J]. 机器人,2019,41(3):353-361. WANG Yinghua,SONG Guangming,LIU Shengsong,et al. Design of a vision-guided aerial manipulator[J]. Robot,2019,41(3):353-361. [13] 孟祥冬,何玉庆,韩建达. 接触作业型飞行机械臂系统的力/位置混合控制[J]. 机器人,2020,42(2):167-178. MENG Xiangdong,HE Yuqing,HAN Jianda. Hybrid force/position control of aerial manipulators in contact operation[J]. Robot,2020,42(2):167-178. [14] FORTE F,NALDI R,MACCHELLI A,et al. On the control of an aerial manipulator interacting with the environment[C]// IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press,2014:4487-4492. [15] GIOIOSO G,RYLL M,PRATTICHIZZO D,et al. Turning a near-hovering controlled quadrotor into a 3D force effector[C]// IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press,2014:6278-6284. [16] LIANG J C,CHEN Y J,WU Y N,et al. Active physical interaction control for aerial manipulator based on external wrench estimation[J]. IEEE/ASME Transactions on Mechatronics,2023,28(5):2774-2785. [17] WOPEREIS H W,HOEKSTRA J J,POST T H,et al. Application of substantial and sustained force to vertical surfaces using a quadrotor[C]// IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press,2017:2704-2709. [18] WOPEREIS H W,VAN DE RIDDER W L W,LANKHORST T J W,et al. Multimodal aerial locomotion:An approach to active tool handling[J]. IEEE Robotics & Automation Magazine,2018,25(4):57-65. [19] HAMAZA S,GEORGILAS I,FERNANDEZ M,et al. Sensor installation and retrieval operations using an unmanned aerial manipulator[J]. IEEE Robotics and Automation Letters,2019,4(3):2793-2800. [20] MENG X D,HE Y Q,LI Q,et al. Contact force control of an aerial manipulator in pressing an emergency switch process[C]// IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway:IEEE Press,2018:2107-2113. [21] MENG X D,HE Y Q,HAN J D. Design and implementation of a contact aerial manipulator system for glass-wall inspection tasks[C]// IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway:IEEE Press,2019:215-220. [22] MENG X D,HE Y Q,HAN J D. Hybrid force/motion control and implementation of an aerial manipulator towards sustained contact operations[C]// IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway:IEEE Press,2019:3678-3683. [23] XU M X,HU A,WANG H S. Image-based visual impedance force control for contact aerial manipulation[J]. IEEE Transactions on Automation Science and Engineering,2023,20(1):518-527. [24] HU A,XU M X,WANG H S,et al. Vision-based hierarchical impedance control of an aerial manipulator[J]. IEEE Transactions on Industrial Electronics,2023,70(7):7014-7022. [25] JIMENEZ-CANO A E,BRAGA J,HEREDIA G,et al. Aerial manipulator for structure inspection by contact from the underside[C]// IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway:IEEE Press,2015:1879-1884. [26] FUMAGALLI M,NALDI R,MACCHELLI A,et al. Developing an aerial manipulator prototype:Physical interaction with the environment[J]. IEEE Robotics & Automation Magazine,2014,21(3):41-50. [27] STEPHENS B,ORR L,KOCER B B,et al. An aerial parallel manipulator with shared compliance[J]. IEEE Robotics and Automation Letters,2022,7(4):11902-11909. [28] KORPELA C,ORSAG M,OH P,et al. Towards valve turning using a dual-arm aerial manipulator[C]// IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway:IEEE Press,2014:3411-3416. [29] ORSAG M,KORPELA C,BOGDAN S,et al. Dexterous aerial robots—Mobile manipulation using unmanned aerial systems[J]. IEEE Transactions on Robotics,2017,33(6):1453-1466. [30] CAR M,IVANOVIC A,ORSAG M,et al. Impedance based force control for aerial robot peg-in-hole insertion tasks[C]// IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway:IEEE Press,2018:6734-6739. [31] TOGNON M,FRANCHI A. Omnidirectional aerial vehicles with unidirectional thrusters:Theory,optimal design,and control[J]. IEEE Robotics and Automation Letters,2018,3(3):2277-2282. [32] RASHAD R,GOERRES J,AARTS R,et al. Fully actuated multirotor UAVs:A literature review [J]. IEEE Robotics & Automation Magazine,2020,27(3):97-107. [33] 陈钢,宋光明,郝爽,等. 一种双倾斜式全驱动六旋翼无人机的建模与控制[J]. 仪器仪表学报,2021,42(12):254-262. CHEN Gang,SONG Guangming,HAO Shuang,et al. Modeling and control of a fully-actuated hexarotor with double-tilted rotors[J]. Chinese Journal of Scientific Instrument,2021,42(12):254-262. [34] BODIE K,BRUNNER M,PANTIC M,et al. An omnidirectional aerial manipulation platform for contact-based inspection[C]// 15th Robotics:Science and Systems Conference. London:The MIT Press,2019:1-9. [35] BODIE K,BRUNNER M,PANTIC M,et al. Active interaction force control for contact-based inspection with a fully actuated aerial vehicle[J]. IEEE Transactions on Robotics,2021,37(3):709-722. [36] RYLL M,MUSCIO G,PIERRI F,et al. 6D interaction control with aerial robots:The flying end-effector paradigm[J]. International Journal of Robotics Research,2019,38(9):1045-1062. [37] PRAVEEN A,MA X,MANOJ H,et al. Inspection-on-the-fly using hybrid physical interaction control for aerial manipulators[C]// IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway:IEEE Press,2020:1583-1588. [38] HAO S,SONG G M,MAO J Z,et al. A fully actuated aerial manipulator system for industrial contact inspection applications[J]. Industrial Robot,2023,50(3):421-431. [39] VOLIRO AG[EB/OL]. [2023-06-08]. https://voliro.com/. [40] SKYGAUGE ROBOTICS[EB/OL]. [2023-06-08]. https://www.skygauge.co/. [41] OLLERO A,HEREDIA G,FRANCHI A,et al. The AEROARMS project:Aerial robots with advanced manipulation capabilities for inspection and maintenance[J]. IEEE Robotics & Automation Magazine,2018,25(4):12-23. [42] TOGNON M,CHÁVEZ,H A T,GASPARIN E,et al. A truly-redundant aerial manipulator system with application to push-and-slide inspection in industrial plants[J]. IEEE Robotics and Automation Letters,2019,4(2):1846-1851. [43] NAVA G,SABLÉ Q,TOGNON M,et al. Direct force feedback control and online multi-task optimization for aerial manipulators[J]. IEEE Robotics and Automation Letters,2020,5(2):331-338. [44] SARKISOV Y S,KIM M J,BICEGO D,et al. Development of SAM:Cable-suspended aerial manipulator[C]// IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press,2019:5323-5329. [45] LEE J,BALACHANDRAN R,SARKISOV Y S,et al. Visual-inertial telepresence for aerial manipulation[C]// IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press,2020:1222-1229. [46] DING C W,LU L,WANG C,et al. Design,sensing,and control of a novel UAV platform for aerial drilling and screwing[J]. IEEE Robotics and Automation Letters,2021,6(2):3176-3183. [47] DING C W,LU L. A tilting-rotor unmanned aerial vehicle for enhanced aerial locomotion and manipulation capabilities:Design,control,and applications[J]. IEEE/ASME Transactions on Mechatronics,2021,26(4):2237-2248. [48] BODIE K,TOGNON M,SIEGWART R. Dynamic end effector tracking with an omnidirectional parallel aerial manipulator[J]. IEEE Robotics and Automation Letters,2021,6(4):8165-8172. [49] CUNIATO E,GECKELER C,BRUNNER M,et al. Design and control of a micro overactuated aerial robot with an origami delta manipulator[C]// IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press,2023:5352-5358. [50] NGUYEN H-N,PARK S,PARK J,et al. A novel robotic platform for aerial manipulation using quadrotors as rotating thrust generators[J]. IEEE Transactions on Robotics,2018,34(2):353-369. [51] PARK S,LEE J,AHN J,et al. ODAR:Aerial manipulation platform enabling omnidirectional wrench generation[J]. IEEE/ASME Transactions on Mechatronics,2018,23(4):1907-1918. [52] YANG H,PARK S,LEE J,et al. LASDRA:Large-size aerial skeleton system with distributed rotor actuation[C]// IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press,2018:7017-7023. [53] PARK S,LEE Y,HEO J,et al. Pose and posture estimation of aerial skeleton systems for outdoor flying[C]// IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press,2019:704-710. [54] ZHAO M J,ANZAI T,SHI F,et al. Design,modeling,and control of an aerial robot DRAGON:A dual-rotor-embedded multilink robot with the ability of multi-degree-of-freedom aerial transformation[J]. IEEE Robotics and Automation Letters,2018,3(2):1176-1183. [55] ZHAO M J,KAWASAKI K,ANZAI T,et al. Transformable multirotor with two-dimensional multilinks:Modeling,control,and whole-body aerial manipulation[J]. The International Journal of Robotics Research,2018,37(9):1085-1112. [56] SHI F,ZHAO M J,MUROOKA M,et al. Aerial regrasping:Pivoting with transformable multilink aerial robot[C]// IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press,2020:200-207. [57] ZHAO M J,NAGATO K,OKADA K,et al. Forceful valve manipulation with arbitrary direction by articulated aerial robot equipped with thrust vectoring apparatus[J]. IEEE Robotics and Automation Letters,2022,7(2):4893-4900. [58] SUGITO N,ZHAO M J,ANZAI T,et al. Aerial manipulation using contact with the environment by thrust vectorable multilinked aerial robot[C]// IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press,2022:54-60. [59] NGUYEN H,ALEXIS K. Forceful aerial manipulation based on an aerial robotic chain:Hybrid modeling and control[J]. IEEE Robotics and Automation Letters,2021,6(2):3711-3719. [60] ARDUPILOT. Ardupilot[EB/OL]. [2023-06-08]. https://ardupilot.org/. [61] PX4 AUTOPLIOT. PX4[EB/OL]. [2023-06-08]. https://px4.io/. [62] FIRMAMENT-AUTOPILOT. Firmament[EB/OL]. [2023-06-08]. https://firmament-autopilot.github.io/FMT-DOCS/. [63] IKEDA T,YASUI S,FUJIHARA M,et al. Wall contact by octo-rotor UAV with one DoF manipulator for bridge inspection[C]// IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway:IEEE Press,2017:5122-5127. [64] HAMAZA S,GEORGILAS I,RICHARDSON T. An adaptive-compliance manipulator for contact-based aerial applications[C]// IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Piscataway:IEEE Press,2018:730-735. [65] HAMAZA S,GEORGILAS I,RICHARDSON T. 2D contour following with an unmanned aerial manipulator:Towards tactile-based aerial navigation[C]// IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway:IEEE Press,2019:3664-3669. [66] YANG H,LEE D J. Dynamics and control of quadrotor with robotic manipulator[C]// IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press,2014:5544-5549. [67] KIM M J,KONDAK K,OTT C. A stabilizing controller for regulation of UAV with manipulator[J]. IEEE Robotics and Automation Letters,2018,3(3):1719-1726. [68] 陈彦杰,于健业,张振国,等. 飞行作业机器人动态抓取的非奇异终端滑模自适应控制[J]. 机械工程学报,2023,59(23):76-86. CHEN Yanjie,YU Jianye,ZHANG Zhenguo,et al. Nonsingular terminal sliding mode adaptive control for unmanned aerial manipulator in gliding grasping[J]. Journal of Mechanical Engineering,2023,59(23):76-86. [69] LUNNI D,SANTAMARIA-NAVARRO A,ROSSI R,et al. Nonlinear model predictive control for aerial manipulation[C]// International Conference on Unmanned Aircraft Systems. Piscataway:IEEE Press,2017:87-93. [70] RYLL M,MUSCIO G,PIERRI F,et al. 6D physical interaction with a fully actuated aerial robot[C]// IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press,2017:5190-5195. [71] ZHANG J,ZHAO L X,LI L L,et al. Design of passive constant-force end-effector for robotic polishing of optical reflective mirrors[J]. Chinese Journal of Mechanical Engineering,2022,35(1):141. [72] HOGAN N. Impedance control:An approach to manipulation:Part I—Theory[J]. Journal of Dynamic Systems,Measurement,and Control,1985,107(1):1-7. [73] 李振,赵欢,王辉,等. 机器人磨抛加工接触稳态自适应力跟踪研究[J]. 机械工程学报,2022,58(9):200-209. LI Zhen,ZHAO Huan,WANG Hui,et al. Research on contact steady-state adaptive force tracking of robot grinding and polishing[J]. Journal of Mechanical Engineering,2022,58(9):200-209. [74] WANG L H,CUI S F,MA C,et al. Compound impedance control of a hydraulic driven parallel 3UPS/S manipulator[J]. Chinese Journal of Mechanical Engineering,2020,33(1):56. [75] MARKOVIĆ,L,CAR M,ORSAG M,et al. Adaptive stiffness estimation impedance control for achieving sustained contact in aerial manipulation[C]// IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press,2021:117-123. [76] RASHAD R,BICEGO D,ZULT J,et al. Energy aware impedance control of a flying end-effector in the port-hamiltonian framework[J]. IEEE Transactions on Robotics,2022,38(6):3936-3955. [77] SCHUSTER M,BERNSTEIN D,RECK P,et al. Automated aerial screwing with a fully actuated aerial manipulator[C]// IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway:IEEE Press,2022:3340-3347. [78] ZHANG W X,OTT L,TOGNON M,et al. Learning variable impedance control for aerial sliding on uneven heterogeneous surfaces by proprioceptive and tactile sensing[J]. IEEE Robotics and Automation Letters,2022,7(4):11275-11282. [79] BENZI F,BRUNNER M,TOGNON M,et al. Adaptive tank-based control for aerial physical interaction with uncertain dynamic environments using energy-task estimation[J]. IEEE Robotics and Automation Letters,2022,7(4):9129-9136. [80] BRUNNER M,RIZZI G,STUDIGER M,et al. A planning-and-control framework for aerial manipulation of articulated objects[J]. IEEE Robotics and Automation Letters,2022,7(4):10689-10696. [81] NGUYEN H,LEE D. Hybrid force/motion control and internal dynamics of quadrotors for tool operation[C]// IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway:IEEE Press,2013:3458-3464. [82] PERIC L,BRUNNER M,BODIE K,et al. Direct force and pose NMPC with multiple interaction modes for aerial push-and-slide operations[C]// IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press,2021:131-137. [83] GIOIOSO G,MOHAMMADI M,FRANCHI A,et al. A Force-based bilateral teleoperation framework for aerial robots in contact with the environment[C]// IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press,2015:318-324. [84] KIM D,OH P Y. Human-drone interaction for aerially manipulated drilling using haptic feedback[C]// IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway:IEEE Press,2020:9774-9780. [85] COELHO A,SINGH H,KONDAK K,et al. Whole-body bilateral teleoperation of a redundant aerial manipulator[C]// IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press,2020:9150-9156. [86] ALLENSPACH M,LAWRANCE N,TOGNON M,et al. Towards 6DoF bilateral teleoperation of an omnidirectional aerial vehicle for aerial physical interaction[C]// IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press,2022:9302-9308. |
[1] | 赵萍, 张涯婷, 程悦, 徐宏伟, 訾斌. 基于敏感度分析的单自由度Stephenson机构多目标轨迹综合方法[J]. 机械工程学报, 2024, 60(5): 59-69. |
[2] | 訾斌, 赵嘉浩, 王威, 杜敬利, 杨桂林. 大空间刚柔耦合机器人关键技术研究现状及发展趋势[J]. 机械工程学报, 2024, 60(23): 21-42. |
[3] | 潘杰, 于靖军, 裴旭. 柔性手爪机构设计与变刚度技术研究发展综述[J]. 机械工程学报, 2024, 60(13): 281-296. |
[4] | 张奇祥, 王金湘, 张伊晗, 张荣林, 靳立强, 殷国栋. 智能电动汽车线控制动关键技术与研究进展[J]. 机械工程学报, 2024, 60(10): 339-365. |
[5] | 张树新, 于亦奇, 曹政, 李拓, 罗康. 可重复展收单折伞状天线机构创新设计与实验验证[J]. 机械工程学报, 2023, 59(3): 13-21. |
[6] | 俞滨, 李化顺, 黄智鹏, 何小龙, 巴凯先, 史亚鹏, 孔祥东. 足式机器人液压驱动关键技术研究综述[J]. 机械工程学报, 2023, 59(19): 81-110. |
[7] | 赵嘉浩, 訾斌, 王威, 李元, 徐锋. 刚柔复合驱动并联喷涂机器人机构设计与工作空间分析[J]. 机械工程学报, 2023, 59(15): 28-39. |
[8] | 刘亚军, 訾斌, 王正雨, 游玮, 郑磊. 智能喷涂机器人关键技术研究现状及进展[J]. 机械工程学报, 2022, 58(7): 53-74. |
[9] | 马龙, 孙汉旭, 李明刚, 孙萍, 张维振, 龙秉政, 史慧文. 质心径向可变球形机器人的设计与运动分析[J]. 机械工程学报, 2022, 58(5): 44-56. |
[10] | 杨俊儒, 褚端峰, 陆丽萍, 王金湘, 吴超仲, 殷国栋. 智能汽车人机共享控制研究综述[J]. 机械工程学报, 2022, 58(18): 31-55. |
[11] | 王文东, 肖孟涵, 孔德智, 郭栋, 袁小庆, 张鹏. 基于人机耦合模型的上肢康复外骨骼闭环PD迭代控制方法[J]. 机械工程学报, 2021, 57(21): 11-21. |
[12] | 田国英, 陈昭翔, 孙树磊, 邓鹏毅, 彭忆强. 一种汽车自动制动踏板机构设计及试验[J]. 机械工程学报, 2021, 57(2): 169-178. |
[13] | 战强, 李伟. 球形移动机器人的研究进展与发展趋势[J]. 机械工程学报, 2019, 55(9): 1-17. |
[14] | 张军. 电压型PWM整流器控制现状及发展趋势分析[J]. 电气工程学报, 2018, 13(10): 29-34. |
[15] | 王力锋, 刘凤德, 刘薇娜, 田淼磊. 高氮钢激光-电弧复合焊接气孔控制方法研究*[J]. 机械工程学报, 2016, 52(20): 51-59. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||