• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2021, Vol. 57 ›› Issue (2): 169-178.doi: 10.3901/JME.2021.02.169

• 运载工程 • 上一篇    下一篇

扫码分享

一种汽车自动制动踏板机构设计及试验

田国英1,2, 陈昭翔1, 孙树磊1,2, 邓鹏毅1,2, 彭忆强1,2   

  1. 1. 西华大学汽车与交通学院 成都 610039;
    2. 西华大学汽车测控与安全四川省重点实验室 成都 610039
  • 收稿日期:2020-06-21 修回日期:2020-10-29 出版日期:2021-01-20 发布日期:2021-03-15
  • 通讯作者: 田国英(通信作者),男,1986年出生,博士,讲师。主要研究方向为汽车系统动力学及控制。E-mail:gytian@mail.xhu.edu.cn
  • 基金资助:
    国家重点研发计划(2018YFB1201603)、四川省科技厅(2019ZDZX0002,2021ZDYF3600)、汽车测控与安全四川省重点实验室研究基金(szjj2016-016)、西华大学重点科研基金(Z1620304)和西华大学“青年学者”支持计划资助项目。

Design and Test of Automatic Brake Pedal Mechanism for Automobiles

TIAN Guoying1,2, CHEN Zhaoxiang1, SUN Shulei1,2, DENG Pengyi1,2, PENG Yiqiang1,2   

  1. 1. School of Automobile and Transportation, Xihua University, Chengdu 610039;
    2. Key Laboratory of Automobile Measurement and Control&Safety, Xihua University, Chengdu 610039
  • Received:2020-06-21 Revised:2020-10-29 Online:2021-01-20 Published:2021-03-15

摘要: 为方便传统汽车制动踏板的机械自动化,根据汽车制动踏板结构形式,设计一种带有圆弧形截面的自动制动踏板机构。运用机构运动学原理,建立自动制动踏板运动学模型,提出一种根据踏板结构几何约束确定最优圆弧形截面尺寸的方法。以某电动汽车制动踏板为例,计算获得该踏板最优圆弧形截面的设计尺寸,并与CATIA DMU模型和台架试验数据进行对比,验证所建立运动学模型的正确性。通过开展实车制动试验,说明所设计自动制动踏板机构的可行性。结果表明,建立的自动制动踏板机构运动学模型与CATIA DMU模型的计算结果完全一致,与台架试验数据亦十分接近;在最优圆弧形截面的制动仿真中,运动销与圆弧形截面的切点和运动销顶点的横向偏差不超过0.54 mm,该机构能平稳连续的传递制动推力;实车制动试验表明,所设计自动制动踏板能有效实现慢速、快速和人-机分离等自动驾驶车辆的制动过程。

关键词: 制动踏板, 机构设计, 运动几何, 自动驾驶

Abstract: For the convenience of mechanical automation for traditional automobile brake pedal, an automatic brake pedal mechanism with circular section is designed according to the general automobile brake pedal structure form. A kinematics model of the automatic braking pedal is established using the principle of mechanism kinematics. A method for determining the optimal section arc size is proposed based on geometric constraints of the pedal structure. Take a brake pedal of an electric vehicle as an example, the optimal section arc size is calculated, and compared with the CATIA DMU model and the bench test data in which the correctness of the established model is verified. A practical vehicle brake test is carried out, and the feasibility of the designed automatic brake pedal mechanism is explained. The results show that the computational results of the established kinematics model are completely consistent with the results of CATIA DMU model, and are also very close to the bench test data. In the brake simulation for the optimal section arc size, the maximum horizontal deviation between the tangency points and pin vertexes is less than 0.54 mm, which means the mechanism can transfer smooth and continuous braking force. In the real vehicle brake test, the designed automatic brake pedal can be effectively implemented in braking processes such as the slow brake, fast brake and man-machine separated brake of a self-driving vehicle.

Key words: brake pedal, mechanism design, kinematic geometry, self-driving

中图分类号: