• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2021, Vol. 57 ›› Issue (21): 11-21.doi: 10.3901/JME.2021.21.011

• 机器人及机构学 • 上一篇    下一篇

扫码分享

基于人机耦合模型的上肢康复外骨骼闭环PD迭代控制方法

王文东1, 肖孟涵1, 孔德智1, 郭栋1, 袁小庆1, 张鹏2,3   

  1. 1. 西北工业大学机电学院 西安 710072;
    2. 西北工业大学工程实践训练中心 西安 710072;
    3. 东莞市三航军民融合创新研究院 东莞 523808
  • 收稿日期:2020-08-18 修回日期:2020-11-23 出版日期:2021-11-05 发布日期:2021-12-28
  • 通讯作者: 王文东(通信作者),男,1984年出生,博士,副教授,硕士研究生导师。主要研究方向为康复外骨骼机器人、人机交互系统设计、柔顺控制方法。E-mail:wdwang@nwpu.edu.cn
  • 作者简介:袁小庆,男,1979年出生,博士,副教授,硕士研究生导师。主要研究方向为外骨骼机器人与人机协同控制方法。E-mail:yuan@nwpu.edu.cn;张鹏,男,1987年出生,博士,助理研究员。主要研究方向为机器人与智能控制方法。E-mail:zhangpeng0682@163.com
  • 基金资助:
    国家自然科学基金(51605385)、陕西省自然科学基础研究计划(2020JM-131)、广东省基础与应用基础研究基金(2019A1515111176)和陕西省重点研发计划(2020KW-058)资助项目。

Closed-loop PD Iterative Control Method for Upper Limb Rehabilitation Exoskeleton Based on Human-robot Coupling Model

WANG Wendong1, XIAO Menghan1, KONG Dezhi1, GUO Dong1, YUAN Xiaoqing1, ZHANG Peng2,3   

  1. 1. School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072;
    2. Training Center for Engineering Practices, Northwestern Polytechnical University, Xi'an 710072;
    3. Dongguan Sanhang Military-civilian Integration Innovation Research Institute, Dongguan 523808
  • Received:2020-08-18 Revised:2020-11-23 Online:2021-11-05 Published:2021-12-28

摘要: 针对多关节上肢外骨骼重复性康复训练非线性求解困难问题,提出了一种闭环PD迭代学习控制方法。基于人体工学确定了六自由度上肢外骨骼康复机械臂的参数、自由度配置与关节运动范围。以人机交互力为耦合方式,建立了基于牛顿-欧拉法的人机耦合模型,完成了人机耦合动力学模拟分析。基于迭代学习控制理论提出外骨骼康复机械臂的闭环PD迭代学习控制方法,通过建模仿真分析了肩关节/肘关节迭代学习控制的轨迹误差、人机交互力和驱动力矩。第三次迭代后的轨迹误差小于0.05 rad,PD迭代学习控制器的输出对系统控制进行了有效的补偿,提高了系统状态的稳定性。研制了六自由度上肢外骨骼康复机械臂样机,开展试验测试。试验结果表明,随着控制试验在迭代域上的运行,系统的输出向着期望的系统状态转化,所提出的迭代学习控制算法可以提高上肢外骨骼康复训练重复性运动的控制精度,进而提高人机交互性能。

关键词: 上肢外骨骼, 人机耦合, 康复训练, 迭代控制方法

Abstract: Aiming at the difficult problem of nonlinear solution in repetitive rehabilitation training of multi-joint upper limb exoskeleton, a closed-loop PD iterative learning control method is proposed. The parameters, degrees of freedom configuration and joint motion range of the six-DOF upper limb exoskeleton rehabilitation robot are determined based on ergonomics. The proposed exoskeleton uses the human-robot interaction force as the coupling method, a human-robot coupling model based on the Newton-Euler method was established, and the human-robot coupling dynamics simulation analysis is complete. Based on the iterative learning control theory, a closed-loop PD iterative learning control method for exoskeleton rehabilitation robot is proposed. The trajectory error, human-robot interaction force and driving torque of the iterative learning control of the shoulder/elbow joint were analyzed through modeling and simulation. The trajectory error after the third iteration is less than 0.05 rad, and the output of the PD iterative learning controller effectively compensates the system control and improves the stability of the system state. A prototype of six-DOF upper limb exoskeleton rehabilitation robot was developed and the relevant tests were performed. The experimental results show that as the control experiment runs in the iterative domain, the output of the system transforms to the desired system state. The proposed iterative learning control algorithm can improve the control accuracy of the repetitive motion of upper limb exoskeleton rehabilitation training, thereby improving the performance of human-computer interaction.

Key words: upper limb exoskeleton, human-machine coupling, rehabilitation training, iterative control met hod

中图分类号: