机械工程学报 ›› 2024, Vol. 60 ›› Issue (21): 336-348.doi: 10.3901/JME.2024.21.336
雷雨1, 许志龙2, 徐西鹏1, 高贾顺3,4, 郭必成2
收稿日期:
2023-11-24
修回日期:
2024-04-19
发布日期:
2024-12-24
通讯作者:
徐西鹏,男,1965年出生,博士,教授,博士研究生导师。主要从事超硬磨粒工具制备及应用、脆性材料高效精密加工研究。E-mail:xpxu@hqu.edu.cn
作者简介:
雷雨,男,1998年出生,博士研究生。主要从事精密加工领域研究。E-mail:13886568044@163.com;许志龙,男,1971年出生,博士,教授,博士研究生导师。主要从事精密加工领域研究。E-mail:Zhilong.xu@163.com
基金资助:
LEI Yu1, XU Zhilong2, XU Xipeng1, GAO Jiashun3,4, GUO Bicheng2
Received:
2023-11-24
Revised:
2024-04-19
Published:
2024-12-24
摘要: 随着微纳制造的快速发展,医疗、电子和能源等领域产品的微结构越来越复杂,精度要求也越来越高,而微结构在切削加工中易产生毛刺,极大地制约了产品的质量和性能。从切削微结构过程中毛刺的形成入手,论述了微结构毛刺形成机理的研究现状,介绍了微细毛刺尺寸的预测与表征方法。分析了切削参数、工艺规划、刀具设计和材料改性等因素对毛刺尺寸的影响,总结了毛刺的控制方法。对微细毛刺去除方法进行归纳分类,并综述了不同微结构毛刺的去除工艺及效果,探讨了目前微结构毛刺去除方面存在的瓶颈问题,指出了微结构毛刺去除方法的发展趋势。
中图分类号:
雷雨, 许志龙, 徐西鹏, 高贾顺, 郭必成. 微切削结构毛刺研究综述[J]. 机械工程学报, 2024, 60(21): 336-348.
LEI Yu, XU Zhilong, XU Xipeng, GAO Jiashun, GUO Bicheng. A Review of Burr Research of Microstructures in Micro Cutting[J]. Journal of Mechanical Engineering, 2024, 60(21): 336-348.
[1] 国家自然科学基金委员会工程与材料科学部. 机械工程学科发展战略报告-2021~2035[M]. 北京:科学出版社,2021. National Natural Science Foundation of China,Department of Engineering and Materials Science. Mechanical engineering discipline development strategy report (2021-2035) [M]. Beijing:Science Press,2021. [2] 汤勇,周明,韩志武,等. 表面功能结构制造研究进展[J]. 机械工程学报,2010,46(23): 93-105. TANG Yong, ZHOU Ming,HAN Zhiwu,et al. Recent research on manufacturing technologies of functional surface structures [J]. Journal of Mechanical Engineering,2010,46(23):93-105 [3] 唐恒,汤勇,伍晓宇,等. 表面功能结构制造研究的新进展与发展趋势[J]. 机械工程学报,2022,58(11):183-199. TANG Heng,TANG Yong,WU Xiaoyu,et al. New progress and development trend of manufacturing of functional surface structure[J]. Journal of Mechanical Engineering,2022,58(11):183-199. [4] PSHENAY-SEVERIN E,BAE H,REICHWALD K,et al. Multimodal nonlinear endomicroscopic imaging probe using a double-core double-clad fiber and focus- combining micro-optical concept[J]. Light:Science & Applications,2021,10(1):207. [5] WANG H,CHEN W,ZHAO W,et al. Numerical and experimental study on the optical performance of micro- pyramid functional surfaces[J]. Microsystem Technologies,2021,27(7):2671-2678. [6] XU Z,XU X,CUI C. Optical functional film with triangular pyramidal texture for Crystalline silicon solar cells[J]. Solar Energy,2020,201:45-54. [7] HUANG R,ZHANG X,NEO W K,et al. Ultra-precision machining of grayscale pixelated micro images on metal surface[J]. Precision Engineering,2018,52:211-220. [8] 石文天,侯岩军,刘玉德,等. 微切削毛刺形成机理及研究进展综述[J]. 中国机械工程,2019,30(23):2809-2819,2828. SHI Wentian,HOU Yanjun,LIU Yude,et al. Overview on formation mechanism and research progress of burrs in micro cutting [J]. China Mechanical Engineering,2019,30(23):2809-2819,2828. [9] JIN S Y,PRAMANIK A,BASAK A K,et al. Burr formation and its treatments-a review[J]. The International Journal of Advanced Manufacturing Technology,2020,107(5-6):2189-2210. [10] AURICH J C,DORNFELD D,ARRAZOLA P J,et al. Burrs—Analysis,control and removal[J]. CIRP Annals,2009,58(2):519-542. [11] LI H,XU Z. Micro-burrs in machining original molds of an optical functional film with a triangular pyramidal texture[J]. Journal of Micromechanics and Microengineering,2021,31(6):65003. [12] LEKKALA R,BAJPAI V,SINGH R K,et al. Characterization and modeling of burr formation in micro-end milling[J]. Precision Engineering,2011,35(4):625-637. [13] PANG X,LIU X,ZHANG J,et al. Investigation on the modelling and characterization of top edge burr formation in slotting finned tube[J]. The International Journal of Advanced Manufacturing Technology,2021,112(1-2):537-551. [14] WU Y,CHEN N,BIAN R,et al. Investigations on burr formation mechanisms in micro milling of high-aspect-ratio titanium alloy Ti-6Al-4V structures[J]. International Journal of Mechanical Sciences,2020,185:105884. [15] WU X,LI L,HE N. Investigation on the burr formation mechanism in micro cutting[J]. Precision Engineering,2017,47:191-196. [16] LIU X,ZHOU T,PANG S,et al. Burr formation mechanism of ultraprecision cutting for microgrooves on nickel phosphide in consideration of the diamond tool edge radius[J]. The International Journal of Advanced Manufacturing Technology,2018,94(9-12):3929-3935. [17] KOBAYASHI R,XU S,SHIMADA K,et al. Defining the effects of cutting parameters on burr formation and minimization in ultra-precision grooving of amorphous alloy[J]. Precision Engineering,2017,49:115-121. [18] HASHIMURA M,HASSAMONTR J,DORNFELD D A. Effect of in-plane exit angle and rake angles on burr height and thickness in face milling operation[J]. Journal of Manufacturing Science and Engineering,1999,66(1):85-90. [19] 王贵成. 金属切削毛刺分类体系的研究及其应用[J]. 中国机械工程,1995(6):40-42,78. WANG Guicheng. Research and application of metal cutting burr classification system [J]. China Mechanical Engineering,1995(6):40-42,78. [20] WAN Z,LI Y,TANG H,et al. Characteristics and mechanism of top burr formation in slotting microchannels using arrayed thin slotting cutters[J]. Precision Engineering,2014,38(1):28-35. [21] ZHANG X,YU T,WANG W,et al. Improved analytical prediction of burr formation in micro end milling[J]. International Journal of Mechanical Sciences,2019,151:461-470. [22] KIZHAKKEN V,MATHEW J. Modeling of burr thickness in micro-end milling of Ti6Al4V[J]. Proceedings of the Institution of Mechanical Engineers,Part B:Journal of Engineering Manufacture,2019,233(4):1087-1102. [23] NIKNAM S A,SONGMENE V. Modeling of burr thickness in milling of ductile materials[J]. The International Journal of Advanced Manufacturing Technology,2013,66(9-12):2029-2039. [24] QIAO Z,QU D,WANG H,et al. Experimental investigation of the influence of chip interference on burr height in machining micro V-grooves on electroplated copper roll die[J]. Proceedings of the Institution of Mechanical Engineers,Part B:Journal of Engineering Manufacture,2018,232(8):1491-1497. [25] LU J,CHEN J,FANG Q,et al. Theoretical analysis and finite element simulation of Poisson burr in cutting ductile metals[J]. Simulation Modelling Practice and Theory,2016,66:260-272. [26] DONG X,ZHOU T,PANG S,et al. Mechanism of burr accumulation and fracture pit formation in ultraprecision microgroove fly cutting of crystalline nickel phosphorus[J]. Journal of Micromechanics and Microengineering,2018,28(12):125008. [27] AKKOYUN F,ERCETIN A,ASLANTAS K,et al. Measurement of micro burr and slot widths through image processing:Comparison of manual and automated measurements in micro-milling[J]. Sensors,2021,21(13):4432. [28] REGNIER T,FROMENTIN G,MARCON B,et al. Fundamental study of exit burr formation mechanisms during orthogonal cutting of AlSi aluminium alloy[J]. Journal of Materials Processing Technology,2018,257:112-122. [29] MEDEOSSI F,SORGATO M,BRUSCHI S,et al. Novel method for burrs quantitative evaluation in micro-milling[J]. Precision Engineering,2018,54:379-387. [30] SHARAN R V,ONWUBOLU G C. Measurement of end-milling burr using image processing techniques[J]. Proceedings of the Institution of Mechanical Engineers,Part B:Journal of Engineering Manufacture,2011,225(3):448-452. [31] LI H,XU Z,JI Z,et al. Quantitative characterization of Poisson burrs on the V-shaped texture based on the volume method[J]. Journal of Materials Research and Technology,2020,9(6):16280-16288. [32] KISWANTO G,ZARIATIN D L,KO T J. The effect of spindle speed,feed-rate and machining time to the surface roughness and burr formation of aluminum alloy 1100 in micro-milling operation[J]. Journal of Manufacturing Processes,2014,16(4):435-450. [33] KUMAR V,SINGH H. Regression analysis of surface roughness and micro-structural study in rotary ultrasonic drilling of BK7[J]. Ceramics International,2018,44(14):16819-16827. [34] 巩亚东,张金峰,张永震,等. 微尺度高速铣削表面质量的试验研究[J]. 机械工程学报,2013,49(13):190-198. GONG Yadong,ZHANG Jinfeng,ZHANG Yongzhen,et al. Experimental research on surface quality in the process of high-speed and micro-scale milling [J]. Journal of Mechanical Engineering,2013,49(13):190-198. [35] 刘书暖,夏文强,王宁,等. CFRP/Ti叠层构件钻孔工艺参数多目标优化方法[J]. 机械工程学报,2020,56(7):193-203. LIU Shunuan,XIA Wenqiang,WANG Ning,et al. Multi-objective drilling parameters optimization method for CFRP/Ti stacks [J]. Journal of Mechanical Engineering,2020,56(7):193-203. [36] THAKRE A A,SONI S. Modeling of burr size in drilling of aluminum silicon carbide composites using response surface methodology[J]. Engineering Science and Technology,an International Journal,2016,19(3):1199-1205. [37] SHANMUGHASUNDARAM P,SUBRAMANIAN R. Study of parametric optimization of burr formation in step drilling of eutectic Al–Si alloy–Gr composites[J]. Journal of Materials Research and Technology,2014,3(2):150-157. [38] LI H,XU Z,PI J,et al. Precision cutting of the molds of an optical functional texture film with a triangular pyramid texture[J]. Micromachines,2020,11(3):248. [39] OLSSON M,PERSSON H,AGMELL M,et al. FE simulation and experimental verification of side-flow and burr formation in machining of oxygen-free copper[J]. Procedia CIRP,2018,72:1427-1432. [40] 陈光,刘见,戈家影,等. 基于运动学及力热分析的CFRP超声振动辅助螺旋铣孔质量影响机制[J]. 机械工程学报,2021,57(1):199-209. CHEN Guang,LIU Jian,GE Jiaying,et al. Experimental study on ultrasonic vibration helical milling of CFRP based on kinematic and thermal-mechanical analysis[J]. Journal of Mechanical Engineering,2021,57(1):199-209. [41] ZAI P,TONG J,LIU Z,et al. Analytical model of exit burr height and experimental investigation on ultrasonic-assisted high-speed drilling micro-holes[J]. Journal of Manufacturing Processes,2021,68:807-817. [42] WU D,ZHANG P,WANG H,et al. Effect of cutting parameters on surface quality during diamond turning of micro-prism array[J]. Proceedings of the Institution of Mechanical Engineers,Part B:Journal of Engineering Manufacture,2017,231(3):555-561. [43] HUANG Y,LI S. Fabrication of micropyramid structure by fly-cutting[J]. Optical Engineering,2019,58(1):013107. [44] 高兴,李勇,钟昊,等. 回转对称微结构光学模具的超精密切削B轴旋转加工工艺[J]. 清华大学学报,2017,57(2):120-127. GAO Xing,LI Yong,ZHONG Hao,et al. B axis rotating machining of microstructed optical molds with rotational symmetry based on ultra-precision cutting [J]. Journal of Tsinghua University,2017,57(2):120-127. [45] RAHMAN M,SENTHIL KUMAR A,SALAM M U. Experimental evaluation on the effect of minimal quantities of lubricant in milling[J]. International Journal of Machine Tools and Manufacture,2002,42(5):539-547. [46] PAN J,FENG K,HE L,et al. Influence of different textures on machining performance of a milling tool[J]. Advances in Materials Science and Engineering,2020,2020:1-11. [47] SAPTAJI K,SUBBIAH S. Burr reduction of micro-milled microfluidic channels mould using a tapered tool[J]. Procedia Engineering,2017,184:137-144. [48] SAPTAJI K,SUBBIAH S,DHUPIA J S. Effect of side edge angle and effective rake angle on top burrs in micro-milling[J]. Precision Engineering,2012,36(3):444-450. [49] AZIZ M,OHNISHI O,ONIKURA H. Innovative micro hole machining with minimum burr formation by the use of newly developed micro compound tool[J]. Journal of Manufacturing Processes. 2012,14(3):224-232. [50] AHMED F,AHMAD F,KUMARAN S T,et al. Development of cryogenic assisted machining strategy to reduce the burr formation during micro-milling of ductile material[J]. Journal of Manufacturing Processes,2023,85:43-51. [51] FEISTLE M,KOSLOW I,KRINNINGER M,et al. Reduction of burr formation for conventional shear cutting of boron-alloyed sheets through focused heat treatment[J]. Procedia CIRP,2017,63:493-498. [52] THANIGAIVELAN R,ARUNACHALAM R M,MADHAN C,et al. Impact of electrochemical passivation on burr suppression of Ti-4Al-6V alloy during machining[J]. Surface Engineering and Applied Electrochemistry,2019,55(4):424-429. [53] TOH C K. The use of ultrasonic cavitation peening to improve micro-burr-free surfaces[J]. The International Journal of Advanced Manufacturing Technology,2006,31(7-8):688-693. [54] FANG F Z,LIU Y C. On minimum exit-burr in micro cutting[J]. Journal of Micromechanics and Microengineering,2004,14(7):984-988. [55] KOLGANOVA E N,GONCHAROV V M,FEDOROV A V. Investigation of deburring process at vibro-abrasive treatment of parts having small grooves and holes[J]. Materials Today:Proceedings,2019,19:2368-2373. [56] KO S L,BARON Y M,PARK J I. Micro deburring for precision parts using magnetic abrasive finishing method[J]. Journal of Materials Processing Technology,2007,187-188:19-25. [57] JIAO A,ZHANG G,LIU B,et al. Study on improving hole quality of 7075 aluminum alloy based on magnetic abrasive finishing[J]. Advances in Mechanical Engineering,2020,12(6):2072262288. [58] KIM T,KWAK J. A study on deburring of magnesium alloy plate by magnetic abrasive polishing[J]. International Journal of Precision Engineering and Manufacturing,2010,11(2):189-194. [59] YIN S,SHINMURA T. Vertical vibration-assisted magnetic abrasive finishing and deburring for magnesium alloy[J]. International Journal of Machine Tools and Manufacture,2004,44(12-13):1297-1303. [60] MATHAI G,MELKOTE S. Effect of process parameters on the rate of abrasive assisted brush deburring of microgrooves[J]. International Journal of Machine Tools and Manufacture,2012,57:46-54. [61] MATHAI G,MELKOTE S,Rosen D. Material removal during abrasive impregnated brush deburring of micromilled grooves in NiTi foils[J]. International Journal of Machine Tools and Manufacture,2013,72:37-49. [62] JAIN V K,ADSUL S G. Experimental investigations into abrasive flow machining (AFM)[J]. International Journal of Machine Tools and Manufacture,2000,40(7):1003-1021. [63] SANKAR M R,JAIN V K,RAMKUMAR J. Experimental investigations into rotating workpiece abrasive flow finishing[J]. Wear,2009,267(1-4):43-51. [64] SANKAR M R,JAIN V K,RAMKUMAR J. Nano-finishing of cylindrical hard steel tubes using rotational abrasive flow finishing (R-AFF) process[J]. The International Journal of Advanced Manufacturing Technology,2016,85(9-12):2179-2187. [65] KAR K K,RAVIKUMAR N L,TAILOR P B,et al. Preferential media for abrasive flow machining[J]. Journal of Manufacturing Science and Engineering-Transactions of the ASME,2009,131(1):011009. [66] KWON B C,KIM K H,KIM K H,et al. New abrasive deburring method using suction for micro burrs at intersecting holes[J]. CIRP Annals,2016,65(1):145-148. [67] UHLMANN E,MIHOTOVIC V,SZULCZYNSKI H,et al. Developing a process model for abrasive flow machining[M]. Berlin,Heidelberg:Springer Berlin Heidelberg,2009,73-78. [68] 苏睿. 水喷射加工及其在去毛刺中的应用[J]. 科技经济导刊, 2018,26(22):26-27. SU Rui. Water jet processing and its application in deburring [J]. Technology and Economic Guide,2018,26(22):26-27. [69] 张汉辰,陈红玲,杨胜强,等. 超声空化去毛刺的理论分析及数值仿真[J]. 应用声学,2015,34(2):119-124. ZHANG Hanchen,CHEN Hongling,YANG Shengqiang,et al. Theoretical analysis and numerical simulation of ultrasonic cavitation deburring [J]. Journal of Applied Acoustics,2015,34(2):119-124. [70] WU C Q,NAKAGAWA N,ZHOU S F. Development of a non-contact micro-deburring method using ultrasonic cavitation bubbles[J]. Advanced Materials Research,2012,512-515:1877-1881. [71] 许志龙. 光面晶体硅—陷光膜复合吸光结构的设计制造及性能研究[D]. 厦门:华侨大学,2020. XU Zhilong. Design,fabrivation and performance research of light absorption structure recombined with smooth crystal silicon and light trapping film. [D]. Xiamen:Huaqiao University,2020. [72] KHMELEV V. N,TSYGANOK S. N,KUZOVNIKOV Y M,et al. Study of ultrasonic cavitation action on the process of part cleaning from burrs[C]// 201617th International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM). IEEE,2016:275-279. [73] 帅和平. 新型铜合金化学去毛刺剂的研制[J]. 电镀与环保, 2017,37(2):50-52. SHUAI Heping. Development of new chemical deburring agent for copper alloy [J]. Electroplating and Pollution Control,2017,37(2):50-52. [74] WEI Z F,ZHENG X H,YU Z Y. Mathematical modeling and experimental study on electrochemical deburring of miniature Holes[J]. Advanced Materials Research,2013,721:382-386. [75] LEE E,WON J,SHIN T,et al. Investigation of machining characteristics for electrochemical micro-deburring of the AZ31 lightweight magnesium alloy[J]. International Journal of Precision Engineering and Manufacturing,2012,13(3):339-345. [76] SARKAR S. Mathematical modeling for controlled electrochemical deburring (ECD)[J]. Journal of Materials Processing Technology,2004,147:241-246. [77] LEE S,LIU C P,FAN T J,et al. Deburring miniature components by electrochemical method[J]. International Journal of Electrochemical Science,2013,8(2):1713-1721. [78] DEB D,BALAS V E,DEY R. Electrochemical deburring of Al6082 using NaCl electrolyte:An exploratory study[M]. Singapore:Springer Singapore Pte. Limited,2019:757,445-457. [79] BHATTACHARYYA B,MUNDA J. Experimental investigation into electrochemical micromachining (EMM) process[J]. Journal of Materials Processing Technology,2003,140(1):287-291. [80] KADAM S P,MITRA S. Electrochemical deburring - A comprehensive review[J]. Materials Today:Proceedings,2021,46:141-148. [81] LEE S H,DORNFELD D A. Precision laser deburring[J]. Journal of Manufacturing Science and Engineering,2001,123(4):601-608. [82] JEONG Y H,HANYOO B,LEE H U,et al. Deburring microfeatures using micro-EDM[J]. Journal of Materials Processing Technology,2009,209(14):5399-5406. [83] ISLAM M M,LI C P,WON S J,et al. A deburring strategy in drilled hole of CFRP composites using EDM process[J]. Journal of Alloys and Compounds,2017,703:477-485. [84] KIM J,KIM Y,SEO J W,et al. Deburring drilled holes in CFRP composites with large pulsed electron beam (LPEB) irradiation[J]. Journal of Manufacturing Processes,2019,40:68-75. [85] KIM J,PARK H W. Hybrid deburring process assisted by a large pulsed electron beam (LPEB) for laser-fabricated patterned metal masks[J]. Applied Surface Science,2015,357:1676-1683. [86] KURNIAWAN R,THIRUMALAI K S,ARUMUGA P V,et al. Measurement of burr removal rate and analysis of machining parameters in ultrasonic assisted dry EDM (US-EDM) for deburring drilled holes in CFRP composite[J]. Measurement:Journal of the International Measurement Confederation,2017,110:98-115. [87] TAN K L,YEO S H. Surface finishing on IN625 additively manufactured surfaces by combined ultrasonic cavitation and abrasion[J]. Additive Manufacturing,2020,31:100938. [88] TAN K L,YEO S H. Surface modification of additive manufactured components by ultrasonic cavitation abrasive finishing[J]. Wear,2017,378-379:90-95. [89] KUMAR A S,DEB S,PAUL S. Ultrasonic-assisted abrasive micro-deburring of micromachined metallic alloys[J]. Journal of Manufacturing Processes,2021,66:595-607. [90] KUMAR A S,DEB S,PAUL S. Burr removal from high-aspect-ratio micro-pillars using ultrasonic-assisted abrasive micro-deburring[J]. Journal of Micromechanics and Microengineering,2022,32(5):55010. [91] MISRA A,PANDEY P M,DIXIT U S. Modeling and simulation of surface roughness in ultrasonic assisted magnetic abrasive finishing process[J]. International Journal of Mechanical Sciences,2017,133:344-356. [92] MISRA A,M. PANDEY P,DIXIT U S. Modeling of material removal in ultrasonic assisted magnetic abrasive finishing process[J]. International Journal of Mechanical Sciences,2017,131-132:853-867. [93] ZHOU Y,GAO Y,WU B,et al. Deburring effect of plasma produced by nanosecond laser ablation[J]. Journal of Manufacturing Science and Engineering,2014,136(2):024501. [94] WANG K,SHEN Q,HE B. Localized electrochemical deburring of cross hole using gelatinous electrolyte[J]. Materials and Manufacturing Processes,2016,31(13):1749-1754. [95] LEE J W,HA S J,HONG K P,et al. A study on the analysis method of shape quality and the micro burr removal on a micro pyramid pattern using the micro MR fluid jet polishing system[J]. Smart Materials and Structures,2016,25(4):45001. |
[1] | 吴杰, 党嘉强, 李宇罡, 陈东, 安庆龙, 王浩伟, 陈明. 应力超声滚压表面强化机理和抗疲劳性能研究[J]. 机械工程学报, 2024, 60(9): 127-136. |
[2] | 温秋玲, 杨野, 黄辉, 黄国钦, 胡中伟, 陈金鸿, 汪晖, 吴贤. 激光复合加工硬脆性材料研究进展综述[J]. 机械工程学报, 2024, 60(9): 168-188. |
[3] | 张禹森, 陈雷, 刘胜杰, 胡峻华, 张启飞, 崔明亮, 胡建良, 金淼. TB6钛合金模锻件低倍组织局部粗晶形成机理及预测[J]. 机械工程学报, 2024, 60(8): 121-131. |
[4] | 任忠凯, 李赫, 许雅楠, 程前, 冯浩, 王涛. 脉冲电场辅助碳素钢极薄带拉伸变形的本构模型和微观组织演变[J]. 机械工程学报, 2024, 60(6): 245-260. |
[5] | 赵传军, 王冀鹏, 许立忠. 基于等效物理模型的脉冲电解微加工精度及定域性表征研究[J]. 机械工程学报, 2024, 60(5): 378-389. |
[6] | 黄家乐, 李萍, 邓亮明, 陈志鹏, 周伟, 向建化. 基于不对称流动阻力的热二极管设计及传热性能研究[J]. 机械工程学报, 2024, 60(18): 208-217. |
[7] | 田波, 娄军强, 沈家旭, 柳丽, 陈特欢, 李国平, 魏燕定. 可用于微创手术的毫米级微小并联机器人的设计、制造及实现[J]. 机械工程学报, 2024, 60(17): 147-155. |
[8] | 彭子龙, 吴金印, 王萌杰, 李一楠, 兰红波. 电场驱动微尺度3D打印掩膜电解加工微结构[J]. 机械工程学报, 2024, 60(15): 420-436. |
[9] | 刘振宇, 陈轲文, 裘辿, 李明, 张雨豪, 谭建荣, 彭群生. 微观几何设计制造的关键技术与工程应用[J]. 机械工程学报, 2024, 60(13): 268-280. |
[10] | 许思远, 张卫东, 毛玉明, 牛斌. 数据驱动的指定变形非均质多胞结构优化设计[J]. 机械工程学报, 2024, 60(1): 85-95. |
[11] | 郭江, 张鹏飞, 杨哲, 赵勇, 李琳光, 景召, 张蒙, 庞桂兵. 匀光阵列微结构模具高性能非接触仿形抛光[J]. 机械工程学报, 2024, 60(1): 127-136. |
[12] | 伍春霞, 唐恒, 张仕伟, 孙亚隆, 伍晓宇, 汤勇. 平板热管沟槽吸液芯结构刻蚀制造研究进展[J]. 机械工程学报, 2023, 59(24): 140-155. |
[13] | 黄维维, 张鑫泉, 朱利民. 基于重复控制的快速刀具伺服系统前馈补偿方法[J]. 机械工程学报, 2023, 59(21): 43-51. |
[14] | 陈新, 陈云, 杨志军, 高健, 陈桪. 电子器件高精高效制造的若干关键技术研究进展[J]. 机械工程学报, 2023, 59(19): 164-175. |
[15] | 王美荣, 陈敏, 蒋嘉豪, 宋晓国, 唐冬雁, 曹健. 激光表面毛化对Ti/K9玻璃扩散焊接头性能的影响[J]. 机械工程学报, 2023, 59(14): 130-137. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||