[1] 周济.智能制造--"中国制造2025 "的主攻方向[J].中国机械工程, 2015, 26(17):2273-2284. ZHOU Ji. Intelligent manufacturing--Main direction of" Made in China 2025"[J]. China Mechanical Engineering, 2015, 26(17):2273-2284. [2] ZHOU Q, SONG S, CHEN Q, et al. Comprehensive studies on hot compaction and vibration-assisted compaction tests of aluminum powder[J]. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2021, 143(1):011006. [3] 周蕊, 刘众旺, 张建国, 等.基于DPC-CZM混合模型的金属粉末压坯裂纹三维数值模拟[J].材料导报, 2020, 34(6):6151-6155. ZHOU Rui, LIU Zhongwang, ZHANG Jianguo, et al. Three-dimensional numerical simulation of green metal powder compacts crack based on DPC-CZM mixed model[J]. Materials Reports, 2020, 34(6):6151-6155. [4] MAYER A E, EBEL A A, AL-SANDOQACHI M K A. Plastic deformation at dynamic compaction of aluminum nanopowder:Molecular dynamics simulations and mechanical model[J]. International Journal of Plasticity, 2020, 124:22-41. [5] BOGDANOVA K, DRUGACHUK S, KOTOV S. Compaction models of copper powders with various properties[J]. Materials Today:Proceedings, 2019, 30:727-730. [6] DONG D, HUANG X, LI G, et al. Study on mechanical characteristics, microstructure and equation of copper powder compaction based on electromagnetic compaction[J]. Materials Chemistry and Physics, 2020, 253:123449. [7] 孙其诚, 王光谦.颗粒物质力学导论[M].北京:科学出版社, 2009. SUN Qicheng, WANG Guangqian. Introduction of mechanics of granular materials[M]. Beijing:Science Press, 2009. [8] 周里群, 许欣, 关汗青, 等.基于离散元法的沥青混凝土振动切削过程的数值模拟[J].机械工程学报, 2017, 53(22):166-175. ZHOU Liqun, XU Xin, GUAN Hanqing, et al. Numerical simulation of vibration cutting for asphalt concrete paving based on discrete element method[J]. Journal of Mechanical Engineering, 2017, 53(22):166-175. [9] HE Y, EVANS T J, YU A B, et al. A GPU-based DEM for modelling large scale powder compaction with wide size distributions[J]. Powder Technology, 2018, 333:219-228. [10] YANO T, OHSAKI S, NAKAMURA H, et al. Numerical study on compression processes of cohesive bimodal particles and their packing structure[J]. Advanced Powder Technology, 2021, 32(5):1362-1368. [11] MENG F, LIU K, QIN T. Numerical analysis of multi-scale mechanical theory of densified powder compaction[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 40(9):430. [12] 张炜.金属粉末高速压制中多尺度力学特性及致密化机制[D].合肥:合肥工业大学, 2019. ZHANG Wei. Multi-scale mechanics and mechanism of densification in high velocity compaction of metal powder[D]. Hefei:Hefei University of Technology, 2019. [13] 张炜, 周剑, 于世伟, 等.离散元法金属粉末高速压制过程中力链特性量化研究[J].机械工程学报, 2018, 54(10):85-92. ZHANG Wei, ZHOU Jian, YU Shiwei, et al. Quantitative investigation on force chains of metal powder in high velocity compaction by using discrete element method[J]. Journal of Mechanical Engineering, 2018, 54(10):85-92. [14] POTYONDY D O, CUNDALL P A. A bonded-particle model for rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41:1329-1364. [15] XIANG Z, ZHANG M, YAN R, et al. Powder-spreading dynamics and packing quality improvement for laser powder bed fusion additive manufacturing[J]. Powder Technology, 2021, 389:278-291. [16] TIRAPELLE M, VOLPATO S, SANTOMASO A C. Shear-induced particle segregation in binary mixtures:Verification of a percolation theory[J]. Particuology, 2021, 57:214-222. [17] ZHANG W, ZHANG S, TAN J, et al. Investigation on the friction mechanism and its relation to the force chains during powder compaction[J]. Journal of the Physical Society of Japan, 2020, 89(12):124602. [18] CUI J, HUANG X, DONG D, et al. Effect of discharge energy of magnetic pulse compaction on the powder compaction characteristics and spring back behavior of copper compacts[J]. Metals and Materials International, 2021, 27(9):3385-3397. [19] CHEN W, WANG J, WANG S, et al. On the processing properties and friction behaviours during compaction of powder mixtures[J]. Materials Science and Technology, 2020, 36(10):1057-1064. [20] HURLEY R C, HALL S A, ANDRADE J E, et al. Quantifying interparticle forces and heterogeneity in 3D granular materials[J]. Physical Review Letters, 2016, 117(9):098005. [21] CÁRDENAS-BARRANTES M, CANTOR D, BARÉS J, et al. Micromechanical description of the compaction of soft pentagon assemblies[J]. Physical Review E, 2021, 103(6):062902. [22] 孙其诚, 金峰, 王光谦, 等.二维颗粒体系单轴压缩形成的力链结构[J].物理学报, 2010, 59(1):30-37. SUN Qicheng, JIN Feng, WANG Guangqian, et al. Force chains in a uniaxially compressed static granular matter in 2D[J]. Acta Physica Sinica, 2010, 59(1):30-37. [23] ZHOU M, HUANG S, LEI Y, et al. Investigation on compaction behaviors of Ag35Cu32Zn33 mixed metal powders under cold die compaction[J]. Journal of Advanced Mechanical Design, Systems and Manufacturing, 2018, 12(2):JAMDSM0037. [24] GOU D, AN X, YANG X, et al. CFD-DEM modeling on air impact densification of equal spheres:Structure evolution, dynamics, and mechanism[J]. Powder Technology, 2017, 322:177-184. [25] DONG D, FU S, JIANG H, et al. Study on the compaction characteristics of CNTs/TC4 composites based on electromagnetic warm compaction[J]. Journal of Alloys and Compounds, 2021, 857:158046. |