[1] 葛叶红.二氧化碳气体保护焊应用现状及展望[J].硅谷, 2010(15):13, 25. GE Yehong. Application status and prospect of carbon dioxide gas shielded welding[J]. Silicon Valley, 2010(15):13, 25. [2] 李亚江, 刘强.气体保护焊工艺及应用[M].北京:化学工业出版社, 2009. LI Yajiang, LIU Qiang. Gas shielded welding process and application[M]. Beijing:Chemical Industry Press, 2009. [3] 马晓丽, 华学明, 吴毅雄.高效焊接技术研究现状及进展[J].焊接, 2007(7):27-31. MA Xiaoli, HUA Xueming, WU Yixiong. Research status and development of high efficient welding[J]. Welding & Joining, 2007(7):27-31. [4] 殷树言, 郑兵, 姜伟雁.粗丝CO2气体保护焊熔滴过渡与潜弧机理的研究[J].材料科学与工艺, 1989, 8(2):95-103. YIN Shuyan, ZHENG Bing, JIANG Weiyan. The metal transfer and burued arc mechanizm in thick wire carbon dioxide arc welding[J]. Materials Science and Technology, 1989, 8(2):95-103. [5] BABA H, ERA T, UEYAMA T, et al. Single pass full penetration joining for heavy plate steel using high current GMA process[J]. Welding in the World:Journal of the International Institute of Welding, 2017, 61(5):963-969. [6] 武传松, 孟祥萌, 陈姬, 等.熔焊热过程与熔池行为数值模拟的研究进展[J].机械工程学报, 2018, 54(2):1-15. WU Chuansong, MENG Xiangmeng, CHEN Ji, et al. Progress in numerical simulation of thermal processes and weld pool behaviors in fusion welding[J]. Journal of Mechanical Engineering, 2018, 54(2):1-15. [7] 曹振宁, 武传松, 吴林.熔滴冲击下MIG焊接熔池的计算机模拟[J].金属学报, 1994, 30(12):537-542. CAO Zhenning, WU Chuansong, WU Lin. Computer simulation of MIG weld pools with droplet impact[J]. Acta Metallurgica Sinica, 1994, 30(12):537-542. [8] 樊丁, 郑发磊, 肖磊, 等.高效MAG焊接熔滴过渡行为及交变磁场控制试验分析[J].焊接学报, 2019, 40(5):1-5. FAN Ding, ZHENG Falei, XIAO Lei, et al. Droplet transfer behavior and alternating magnetic field controlled experimental study of high efficiency MAG welding[J]. Transactions of the China Welding Institution, 2019, 40(5):1-5. [9] XIAO Lei, FAN Ding, HUANG Jiankang, et al. Numerical study on arc-droplet coupled behavior in magnetic field controlled GMAW process[J]. Journal of Physics D:Applied Physics, 2020, 53(11):115202. [10] 樊丁, 黄健康.弧焊物理过程建模与数值分析[M].北京:科学出版社, 2022. FAN Ding, HUANG Jiankang. Modeling and numerical analysis of arc welding physical process[M]. Beijing:Science Press, 2022. [11] Lowke J J, Tanaka M.'LTE-diffusion approximation'for arc calculations[J]. Journal of Physics D Applied Physics, 2006, 39(16):3634-3643. [12] 王健生, 钟易成. VOF在两相流交界面捕捉的应用[J].机械制造与自动化, 2021, 50(6):129-134. WANG Jiansheng, ZHON Yicheng. VOF Application for capturing interface in two-phase flow[J]. Machine Building & Automation, 2021, 50(6):129-134. [13] Torrey M D, Cloutman L D, Mjolsness R C, et al. NASA-VOF2D:A computer program for incompressible flows with free surfaces[J]. Physics of Fluids, 2015, 187(7):28. [14] 肖磊.磁控高效GMAW电弧-熔滴耦合行为研究[D].兰州:兰州理工大学, 2020. XIAO Lei. Study on the magnetic field control high-efficiency GMAW arc-droplet coupling behavior[D]. Lanzhou:Lanzhou University of Technology, 2020. [15] MURPHY A B. A comparison of treatments of diffusion in thermal plasmas[J]. Journal of Physics D Applied Physics, 1996, 29(7):1922-1932. [16] TANAKA M, YAMAMOTO K, TASHIRO S, et al. Time-dependent calculations of molten pool formation and thermal plasma with metal vapour in gas tungsten arc welding[J]. Journal of Physics D Applied Physics, 2012, 43(43):434009. [17] TASHIRO S, TANAKA M, NAKATA K, et al. Plasma properties of helium gas tungsten arc with metal vapor[J]. Science and Technology of Welding and Joining, 2007, 12(3):202-207. [18] HERTEL M, SPILLE-KOHOFF A, FÜSSEL U, et al. Numerical simulation of droplet detachment in pulsed gas-metal arc welding including the influence of metal vapour[J]. Journal of Physics D Applied Physics, 2013, 46(22):4003. [19] LU F G, WANG H P, MURPHY A B, et al. Analysis of energy flow in gas metal arc welding processes through self-consistent three-dimensional process simulation[J]. International Journal of Heat & Mass Transfer, 2014, 68:215-223. [20] MURPHY A B, THOMAS D G. Prediction of arc, weld pool and weld properties with a desktop computer model of metal-inert-gas welding[J]. Welding in the World, 2017, 61(3):623-633. |