[1] MALAKONDAIAH G, SRINIVAS M, RAO P R. Ultrahigh-strength low-alloy steels with enhanced fracture toughness[J]. Progress in Materials Science, 1997, 42(s1-4):209-242. [2] 康永林. 汽车轻量化先进高强钢与节能减排[J]. 钢铁, 2008(6):1-7. KANG Yonglin. Lightweight vehicle, advanced high strength steel and energy-saving and emission reduction[J]. Iron and Steel, 2008(6):1-7. [3] GAUL H, BRAUSER S, WEBER G, et al. Methods to obtain weld discontinuities in spot-welded joints made of advanced high-strength steels[J]. Welding in the World, 2011, 55(11-12):99-106. [4] 焦增宝, 刘锦川. 新型纳米强化超高强度钢的研究与进展[J]. 中国材料进展, 2011, 30(12):6-11. JIAO Zengbao, LIU Jinchuan. Research and development of advanced nano-precipitate strengthened ultra-high strength steels[J]. Materials China, 2011, 30(12):6-11. [5] 胡春东, 孟利, 董瀚. 超高强度钢的研究进展[J]. 材料热处理学报, 2016, 37(11):178-183. HU Chundong, MENG Li, DONG Han. Research and development of ultra-high strength steels[J]. Transactions of Materials and Heat Treatment, 2016, 37(11):178-183. [6] 魏元生. 镀锌板种类及其在车身上的应用[J]. 汽车工艺与材料, 2011(9):51-56, 62. WEI Yuansheng. The types of galvanized plates and their applications on the body[J]. Automobile Technology & Material, 2011(9):51-56, 62. [7] KIM Y G, KIM I J, KIM J S, et al. Evaluation of surface crack in resistance spot welds of Zn-coated steel[J]. Materials Transactions, 2014, 55(1):171-175. [8] DIGIOVANNI C, BIRO E, ZHOU N Y. Impact of liquid metal embrittlement cracks on resistance spot weld static strength[J]. Science and Technology of Welding and Joining, 2018, 24(3):218-224. [9] 孔谅, 凌展翔, 王泽, 等. 镀锌Q&P980钢电阻点焊接头液态金属脆裂纹的形态及分布[J]. 上海交通大学学报, 2019, 53(6):704-707. KONG Liang, LING Zhanxiang, WANG Ze, et al. Morphology and distribution of the liquid metal embrittlement crack in the resistance spot welded joint of the galvanized Q& P980 steel[J]. Journal of Shanghai Jiao Tong University, 2019, 53(6):704-707. [10] LING Zhanxiang, WANG Min, KONG Liang. Liquid metal embrittlement of galvanized steels during industrial processing:A review[J]. Transactions on Intelligent Welding Manufacturing, 2018:25-42. [11] NICHOLAS M, OLD C F. Liquid metal embrittlement[J]. Journal of Materials Science, 1979, 14(1):1-18. [12] JOSEPH B, PICAT M, BARBIER F. Liquid metal embrittlement:A state-of-the-art appraisal[J]. The European Physical Journal-Applied Physics, 1999, 5(1):19-31. [13] KOLMAN D G. A review of recent advances in the understanding of liquid metal embrittlement[J]. Corrosion, 2019, 75(1):42-57. [14] HUNTINGTON A K. The effect of temperatures higher than atmospheric on tensile tests of copper and its alloys and a comparison with wrought iron and steel[J]. Journal of the Institute of Metals, 1914:234-253. [15] SIGLER D R, SCHROTH J G, GAYDEN X Q, et al. Observations of liquid metal assisted cracking in resistance spot welds of zinc-coated advanced high strength steels[C/CD]//Sheet Met. Weld. Conf., 2008. [16] BEAL C, XAVIER K, DAMIEN F, et al. Embrittlement of a zinc coated high manganese TWIP steel[J]. Materials Science and Engineering:A, 2012, 543:76-83. [17] KAMDAR M. Liquid metal embrittlement[J]. Treatise on Materials Science & Technology, 1983(25):361-459. [18] KANG J H, KIM D, KIM D H, et al. Fe-Zn reaction and its influence on microcracks during hot tensile deformation of galvanized 22MnB5 steel[J]. Surface and Coatings Technology, 2019, 357:1069-1075. [19] JUNG G. Liquid metal embrittlement of high Mn TWIP steel[D]. Pohang:Graduate Institute of Ferrous Technology, Postech, 2015. [20] DiGiovanni C, HE L, PISTEK U, et al. Role of spot weld electrode geometry on liquid metal embrittlement crack development[J]. Journal of Manufacturing Processes, 2020, 49:1-9. [21] Lynch S P. Environmentally assisted cracking:Overview of evidence for an adsorption-induced localised-slip process[J]. Acta Metallurgica, 1988, 36(10):2639-2661. [22] TOLF E, HEDEGARD J, MELANDER A. Surface breaking cracks in resistance spot welds of dual phase steels with electro-galvanised and hot dip zinc coating[J]. Science and Technology of Welding and Joining, 2013, 18(1):25-31. [23] BARTHELMIE J, SCHRAM A, WESLING V. Liquid metal embrittlement in resistance spot welding and hot tensile tests of surface-refined TWIP steels[J]. IOP Conference Series:Materials Science and Engineering, 2016, 118:012002. [24] FREI J, BIEGLER M, RETHMEIER M, et al. Susceptibility of electrolytically galvanized dual-phase steel sheets to liquid metal embrittlement during resistance spot welding[J]. Welding in the World, 2018, 62(5):1031-1037. [25] CHOI D Y, UHM S H, ENLOE C M, et al. Liquid metal embrittlement of resistance spot welded 1180TRIP steel-effects of crack geometry on weld mechanical performance[J]. Mater. Sci. Technol., 2017:454-462. [26] WINTIJES E, DiGiovanni C, HE L, et al. Quantifying the link between crack distribution and resistance spot weld strength reduction in liquid metal embrittlement susceptible steels[J]. Welding in the World, 2019, 63(3):807-814. [27] ASHIRI R, HAQUE M A, JI C W, et al. Supercritical area and critical nugget diameter for liquid metal embrittlement of Zn-coated twining induced plasticity steels[J]. Scripta Materialia, 2015, 109:6-10. [28] CHOI D Y, ASHUTOSH S, UHM S H, et al. Liquid metal embrittlement of resistance spot welded 1180 TRIP steel:effect of electrode force on cracking behavior[J]. Metals and Materials International, 2018(4):1-10. [29] 孔谅, 凌展翔, 王泽, 等. 镀锌Q&P980钢电阻点焊接头液态金属脆裂纹的影响因素分析[J]. 焊接学报, 2019, 39(7):37-41, 130. KONG Liang, LING Zhanxiang, WANG Ze, et al. Analysis of the factors influencing the liquid metal embrittlement crack in the resistance spot welding joint of galvanized Q&P980 steel[J]. Journal of Welding, 2019, 39(7):37-41, 130. [30] DIGIOVANNI C, HAN X, POWELL A, et al. Experimental and numerical analysis of liquid metal embrittlement crack location[J]. Journal of Materials Engineering and Performance, 2019, 28(4):2045-2052. [31] ROBERT S, MARTIN G. A cracking good story of liquid metal embrittlement during spot welding of advanced high strength steels[R]. Linz:Voestalpine Stahl GmbH, 2017. [32] KAŠČÁK L, SPISAK E. Evaluation of the influence of the welding current on the surface quality of spot welds[J]. Int. J. Eng. Sci. (IJES), 2016, 5(12):32-37. [33] VANDER A E, HANLON D N, VANDER V T. Resistance spot weldability of 3rd generation advanced high strength steels for automotive applications[C/CD]//5th International Conference on Steels in Cars and Trucks, 2017. [34] BEALC. Mechanical behaviour of a new automotive high manganese TWIP steel in the presence of liquid zinc[D]. Lyon:INSA, 2011. [35] BEAL C, KLEBER X, FABREGUE D, et al. Liquid zinc embrittlement of twinning-induced plasticity steel[J]. Scripta Materialia, 2012, 66(12):1030-1033. [36] ASHIRI R, SHAMANIAN M, SALIMIJAZI H R, et al. Liquid metal embrittlement-free welds of Zn-coated twinning induced plasticity steels[J]. Scripta Materialia, 2016, 114(1):41-47. [37] CHO L, KANG H, LEE C W, et al. Microstructure of liquid metal embrittlement cracks on Zn-coated 22MnB5 press-hardened steel[J]. Scripta Materialia, 2014, 90-91:25-28. [38] RAZMPOOSH M H, MACWAN A, BIRO E, et al. Liquid metal embrittlement in laser beam welding of Zn-coated 22MnB5 steel[J]. Materials & Design, 2018, 155:375-383. [39] LING Zhanxiang, WANG Min, KONG Liang. Liquid metal embrittlement cracking during resistance spot welding of galvanized Q&P980 Steel[J]. Metallurgical and Materials Transactions A, 2019, 50(11):5128-5142. [40] Ling Zhanxiang, WANG Min, KONG Liang, et al. Towards an explanation of liquid metal embrittlement cracking in resistance spot welding of dissimilar steels[J]. Materials & Design, 2020, 195:109055. [41] LEE H, JO M C, SOHN S S, et al. Microstructural evolution of liquid metal embrittlement in resistance-spot-welded galvanized TWinning-Induced Plasticity (TWIP) steel sheets[J]. Materials Characterization, 2019, 147:233-241. [42] KANG H, CHO L, LEE C W, et al. Zn penetration in liquid metal embrittled TWIP steel[J]. Metallurgical & Materials Transactions A, 2016, 47(6):2885-2905. [43] SAHA D.C, CHANG I, PARK Y D. Heat-affected zone liquation crack on resistance spot welded TWIP steels[J]. Materials Characterization, 2014, 93:40-51. [44] RAZMPOOSH M H, BIRO E, CHEN D L, et al. Liquid metal embrittlement in laser lap joining of TWIP and medium-manganese TRIP steel:The role of stress and grain boundaries[J]. Materials Characterization, 2018, 145:627-633. [45] JUNG G, WOO I S, SUH D W, et al. Liquid Zn assisted embrittlement of advanced high strength steels with different microstructures[J]. Metals & Materials International, 2016, 22(2):187-195. [46] LIN K C, LIN C S. Effect of silicon in dual phase steel on the alloy reaction in continuous hot-dip galvanizing and galvannealing[J]. ISIJ International, 2014, 54(10):2380-2384. [47] Scheiber D, Prabitz K, Romaner L, et al. The influence of alloying on Zn liquid metal embrittlement in steels[J]. Acta Materialia, 2020, 195:750-760. [48] Hong S H, Kang J H, Kim D, et al. Si effect on Zn-assisted liquid metal embrittlement in Zn-coated TWIP steels:Importance of Fe-Zn alloying reaction[J]. Surface and Coatings Technology, 2020, 393:125809-125819. [49] CHEN Y L, ZHU Y N, PENG H P, et al. Influence of phosphorus on the growth of Fe-Zn intermetallic compound in Zn/Fe diffusion couples[J]. Surface and Coatings Technology, 2014, 240:63-69. [50] BHATTACHARYA D. Liquid metal embrittlement during resistance spot welding of Zn-coated high-strength steels[J]. Materials Science and Technology, 2018, 34(15):1809-1829. [51] Christoph B, Gerson M, Max B, et al. Prevention of liquid metal embrittlement cracks in resistance spot welds by adaption of electrode geometry[J]. Science and Technology of Welding and Joining, 2020, 25(4):303-310. [52] WINTJES E, DIGIOVANNI C, HE L, et al. Effect of multiple pulse resistance spot welding schedules on liquid metal embrittlement severity[J]. Journal of Manufacturing Science and Engineering, 2019, 141(10):9 [53] DIGIOVANNI C, BAG S, MEHLING C, et al. Reduction in liquid metal embrittlement cracking using weld current ramping[J]. Welding in the World, 2019, 63(6):1583-1591. [54] HE L, DIGIOVANNI C, HAN X, et al. Suppression of liquid metal embrittlement in resistance spot welding of TRIP steel[J]. Science and Technology of Welding & Joining, 2019(6145):1-8. [55] KLAVER T P C, MADSEN G K H, DRAUTZ R. A DFT study of formation energies of Fe-Zn-Al intermetallics and solutes[J]. Intermetallics, 2012, 31:137-144. [56] MIAO Y, HAN D F, XU X F, et al. Phase constitution in the interfacial region of laser penetration brazed magnesium-steel joints[J]. Materials Characterization, 2014, 93:87-93. [57] 杨文谦, 刘翰志, 王鹏, 等. 不同种类镀锌板抗腐蚀性能研究[J]. 全面腐蚀控制, 2015, 29(5):28-30. YANG Wenqian, LIU Hanzhi, WANG Peng, et al. Study on corrosion resistance of different kinds of galvanized sheet[J]. Total Corrosion Control, 2015, 29(5):28-30. |