机械工程学报 ›› 2023, Vol. 59 ›› Issue (2): 51-68.doi: 10.3901/JME.2023.02.051
赵庚1, 方金祥2, 张显程3
收稿日期:
2021-12-03
修回日期:
2022-06-30
发布日期:
2023-03-30
通讯作者:
方金祥(通信作者),男,1989年出生,博士,副教授。主要研究方向为表面工程及无损检测。E-mail:fangjx6@gmail.com
作者简介:
赵庚,男,1996年出生,博士研究生。主要研究方向为无损检测。E-mail:1014789700@qq.com;张显程,男,1979年出生,博士,教授。主要研究方向为高温结构长寿命安全保障理论与技术。E-mail:xczhang@ecust.edu.cn
基金资助:
ZHAO Geng1, FANG Jinxiang2, ZHANG Xiancheng3
Received:
2021-12-03
Revised:
2022-06-30
Published:
2023-03-30
摘要: 微米压入技术已可实现延性金属材料力学性能的准无损检测,相对于传统力学性能测试手段,该技术不仅可实现焊接接头、增材修复界面等微尺度复杂结构力学性能的准无损评价,还可用于在役设备关键重要部件力学性能的在线监测,为其安全预警与寿命预测提供依据。系统总结基于微米压入的延性金属单轴拉伸性能及断裂韧性评价技术的研究及应用现状。首先,较完整地阐述各类评价模型的基本原理、技术路线及实际应用现状,深入讨论不同评价模型的优点及局限性,给出领域内规范、标准的制定进展;然后,分别从理论研究和工程应用两个角度论述了基于微米压入力学性能评价方法存在的问题和挑战;最后,对微米压入力学性能检测技术的发展与应用趋势进行了展望。
中图分类号:
赵庚, 方金祥, 张显程. 基于微米压入的延性金属单轴拉伸性能与断裂韧性评价技术研究进展[J]. 机械工程学报, 2023, 59(2): 51-68.
ZHAO Geng, FANG Jinxiang, ZHANG Xiancheng. Review of Techniques for Evaluating the Uniaxial Tensile Properties and Fracture Toughness of Ductile Metallic Materials Based on Micron Indentation[J]. Journal of Mechanical Engineering, 2023, 59(2): 51-68.
[1] 张敏, 贾芳, 程康康, 等. 调质处理对G520钢焊接接头组织及性能的影响[J]. 金属学报, 2019, 55(11):1379-1387. ZHANG Min, JIA Fang, CHENG Kangkang, et al. Influence of quenching and tempering on microstructure and properties of welded joints of G520 martensitic steel[J]. Acta Metallurgica Sinica, 2019, 55(11):1379-1387. [2] Baltazar Hernandez V H, Panda S K, Kuntz M L, et al. Nanoindentation and microstructure analysis of resistance spot welded dual phase steel[J]. Materials Letters, 2010, 64(2):207-210. [3] WU S, XU T, Song M, et al. Mechanical properties characterisation of welded joint of austenitic stainless steel using instrumented indentation technique[J]. Materials at High Temperatures, 2016, 33(3):270-275. [4] 周亮, 王振环, 孙东辰, 等. 现代精密测量技术现状及发展[J]. 仪器仪表学报, 2017, 38(8):1869-1878. ZHOU Liang, WANG Zhenhuan, SUN Dongchen, et al. Present situation and development of modern precision measurement technology[J]. Chinese Journal of Scientific Instrument, 2017, 38(8):1869-1878. [5] 张辉, 宋雅男, 王耀南, 等. 钢轨缺陷无损检测与评估技术综述[J]. 仪器仪表学报, 2019, 40(2):11-25. ZHANG Hui, SONG Yanan, WANG Yaonan, et al. Review of rail defect non-destructive testing and evaluation[J]. Chinese Journal of Scientific Instrument, 2019, 40(2):11-25. [6] Xiao X Z, Terentyev D, Yu L. Model for the spherical indentation stress-strain relationships of ion-irradiated materials[J]. Journal of the Mechanics and Physics of Solids, 2019, 132:103694. [7] Ganesh Kumar J, Ganesan V, Laha K. High temperature tensile properties of 316LN stainless steel investigated using automated ball indentation technique[J]. Materials at High Temperatures, 2019, 36(1):48-57. [8] Iskakov A, YabansuY C, Rajagopalan S, et al. Application of spherical indentation and the materials knowledge system framework to establishing microstructure-yield strength linkages from carbon steel scoops excised from high-temperature exposed components[J]. Acta Materialia, 2018, 144:758-767. [9] Li J H, Li F G, Ma X K, et al. A strain-dependent ductile damage model and its application in the derivation of fracture toughness by micro-indentation[J]. Acta Materialia, 2015, 67:623-630. [10] Kim W, Choi S, Kim J, et al. Estimation of fracture toughness using flat-ended cylindrical indentation[J]. Metals and Materials International, 2020(2):1-9. [11] Joemax A, Christopher T. Fracture toughness evaluation of AA3003 aluminum alloy through alternative experimental methods and finite element technique[J]. Mechanika, 2018, 24(5):757-763. [12] Zhang T R, Guo J Z, Wang W Q. A strain-pattern-based spherical indentation method for simultaneous uniaxial tensile residual stress and flow property determination[J]. The Journal of Strain Analysis for Engineering Design, 2021, 56(1):50-64. [13] Lei S, He Y M, Liu D B, et al. Prediction of residual stress components and their directions from pile-up morphology:An experimental study[J]. Journal of Materials Research, 2016, 31(16):2392-2397. [14] Wang Z, Deng L, Zhao J. Estimation of residual stress of metal material without plastic plateau by using continuous spherical indentation[J]. International Journal of Pressure Vessels and Piping, 2019, 172:373-378. [15] LIU X K, CAI L X. Indentation model to obtain residual stress based on deviator stress equivalence and its application[J]. Materials Today Communications, 2021, 28(5):102454. [16] Kang J J, Becker A A, Wen W, et al. Extracting elastic-plastic properties from experimental loading-unloading indentation curves using different optimization techniques[J]. International Journal of Mechanical Science, 2018, 144:102-109. [17] Liu M, Lin J, Lu C, et al. Progress in indentation study of materials via both experimental and numerical methods[J]. Crystals, 2017, 7(10):258. [18] Oliver W C, Pharr G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J]. Journal of Materials Research, 1992, 7(6):1564-1583. [19] Oliver W C, Pharr G M. Measurement of hardness and elastic modulus by instrumented indentation:Advances in understanding and refinements to methodology[J]. Journal of Materials Research, 2004, 19(1):3-20. [20] Byun T S, Hong J H, Haggag F M, et al. Measurement of through-the-thickness variations of mechanical properties in SA508 Gr.3 pressure vessel steels using ball indentation test technique[J]. International Journal of Pressure Vessels and Piping, 1997, 74(3):231-238. [21] Murty K L, Mathew M D, Wang Y, et al. Nondestructive determination of tensile properties and fracture toughness of cold worked A36 steel[J]. International Journal of Pressure Vessels and Piping, 1998, 75(11):831-840. [22] Hill R, Storakers B, Zdunek A B. A theoretical study of the Brinell hardness test[J]. Proceedings of the Royal Society A Mathematical, 1989, 423(1865):301-330. [23] Ahn J H, Kwon D. Derivation of plastic stress-strain relationship from ball indentations:Examination of strain definition and pileup effect[J]. Journal of Materials Research, 2001, 16(11):3170-3178. [24] Ganesh K J, Laha K. Influence of some test parameters on automated ball indentation test results[J]. Experimental Techniques, 2018, 42(1):45-54. [25] Lee A, Komvopoulos K. Dynamic spherical indentation of strain hardening materials with and without strain rate dependent deformation behavior[J]. Mechanics of Materials, 2019, 133:128-137. [26] Li Y Y, Jiang W, BOI E. Crystal plasticity assessment of the effect of material parameters on contact depth during spherical indentation[J]. Continuum Mechanics and Thermodynamics, 2020(6):1-11. [27] 伍声宝, 徐彤, 喻灿, 等. 采用球压痕法测16MnR钢的拉伸性能[J]. 机械工程材料, 2015, 39(1):82-85. WU Shengbao, XU Tong, YU Can, et al. Measuring tensile properties of 16MnR steel by ball indentation technology[J]. Mechanical Engineering Materials, 2015, 39(1):82-85. [28] XU B X, Chen X. Determining engineering stress-strain curve directly from the load-depth curve of spherical indentation test[J]. Journal of Materials Research, 2010, 25(12):2297-2307. [29] Chang C, Garrido M A, Ruiz-Hervias J, et al. Representative stress-strain curve by spherical indentation on elastic-plastic materials[J]. Advances in Materials Science and Engineering, 2018, 2018:1-9. [30] Pamnani R, Karthik V, Jayakumar T, et al. Evaluation of mechanical properties across micro alloyed HSLA steel weld joints using Automated Ball Indentation[J]. Materials Science & Engineering:A, 2016, 651:214-223. [31] Li B X, Zhang S, Li J F, et al. Quantitative evaluation of mechanical properties of machined surface layer using automated ball indentation technique[J]. Materials Science and Engineering:A, 2019, 773:138717. [32] Das G, Ghosh S, Sahay S K, et al. Influence of pre-straining on mechanical properties of HSLA steel by using ball indentation technique[J]. International Journal of Materials Research, 2004, 95(12):1120-1127. [33] Wang F Z, Zhao J, Zhu N B, et al. A comparative study on Johnson-cook constitutive modeling for Ti-6Al-4V alloy using automated ball indentation (ABI) technique[J]. Journal of Alloys & Compounds, 2015, 633:220-228. [34] Das G, Das M, Ghosh S, et al. Effect of aging on mechanical properties of 6063 Al-alloy using instrumented ball indentation technique[J]. Materials Science & Engineering A, 2010, 527(6):1590-1594. [35] Nagaraju S, Ganeshkumar J, Vasantharaja P, et al. Evaluation of strength property variations across 9Cr-1Mo steel weld joints using automated ball indentation (ABI) technique[J]. Materials Science & Engineering A, 2017, 695:199-210. [36] Hany R, Ammar, Fahmy M, et al. Nondestructive measurements of flow properties of nanocrystalline Al-Cu-Ti alloy using automated ball indentation (ABI) technique[J]. Materials Science & Engineering A, 2018, 729:477-486. [37] Arunkumar S, Prakash R V. Estimation of tensile properties of pressure vessel steel through automated ball indentation and small punch test[J]. Transactions of the Indian Institute of Metals, 2016, 69(6):1245-1256. [38] Cheng Y T, Cheng C M. Can stress-strain relationships be obtained from indentation curves using conical and pyramidal indenters?[J]. Journal of Materials Research, 1999, 14(9):3493-3496. [39] Lee H, Lee J H, Pharr G M. A numerical approach to spherical indentation techniques for material property evaluation[J]. Journal of the Mechanics and Physics of Solids, 2005, 53(9):2037-2069. [40] Lee J H, Lee H, Kim D H. A numerical approach to evaluation of elastic modulus using conical indenter with finite tip radius[J]. Journal of Materials Research, 2008, 23(9):2528-2537. [41] Lee J H, Lee H, Hyun H, et al. Numerical approaches and experimental verification of the conical indentation techniques for residual stress evaluation[J]. Journal of Materials Research, 2010, 25(11):2212-2223. [42] Lee J H, Lim D, Hyun H, et al. A numerical approach to indentation technique to evaluate material properties of film-on-substrate systems[J]. International Journal of Solids and Structures, 2012, 49:1033-1043. [43] Hui Y, Wu J J, Wang M Z, et al. Equivalent strain hardening exponent of anisotropic materials based on spherical indentation response[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(1):77-87. [44] Wu J J, Wang M Z, Hui Y, et al. Identification of anisotropic plasticity properties of materials using spherical indentation imprint mapping[J]. Materials Science & Engineering, A, 2018, 723:269-278. [45] Campbell J E, Thompson R P, Dean J, et al. Comparison between stress-strain plots obtained from indentation plastometry, based on residual indent profiles, and from uniaxial testing[J]. Acta Materialia, 2019, 168:87-99. [46] Wang M Z, Wu J J, Hui Y, et al. Identification of elastic-plastic properties of metal materials by using the residual imprint of spherical indentation[J]. Materials Science & Engineering, A, 2017, 679:143-154. [47] DAO M, CHOLLACOOP N, VLIET K J V, et al. Computational modeling of the forward and reverse problems in instrumented sharp indentation[J]. Acta Materialia, 2001, 49(19):3899-3918. [48] HYUN H C, KIM M, LEE J H, et al. A dual conical indentation technique based on FEA solutions for property evaluation[J]. Mechanics of Materials, 2011, 43(6):313-331. [49] 金桩, 王占宇, 赵建平. 微载荷球压痕法测量含短屈服平台金属材料应力应变关系的有限元模拟[C]//第九届全国压力容器学术会议论文集. 合肥:合肥工业大学出版社, 2017:180-187. JIN Zhuang, WANG Zhanyu, ZHAO Jianping. Finite element modeling for measuring the stress strain curve of metal material with yield plateau by micro load ball indentation test[C]//Proceedings of the 9th National Pressure Vessel Academic Conference. Hefei:Hefei University of Technology Press, 2017:180-187. [50] CAO Y P, LU J. A new method to extract the plastic properties of metal materials from an instrumented spherical indentation loading curve[J]. Acta Materialia, 2004, 52(13):4023-4032. [51] BEGHINI M, BERTINI L, FONTANARI V. Evaluation of the stress-strain curve of metallic materials by spherical indentation[J]. International Journal of Solids & Structures, 2006, 43(7):2441-2459. [52] ZHANG T R, WANG S, WANG W Q. Method to determine the optimal constitutive model from spherical indentation tests[J]. Results in Physics, 2018, 8:716-727. [53] PENG G J, LU Z K, MA Y, et al. Spherical indentation method for estimating equibiaxial residual stress and elastic-plastic properties of metals simultaneously[J]. Journal of Materials Research, 2018, 33(8):884-897. [54] PHAM T H, PHAN Q M, KIM S E. Identification of the plastic properties of structural steel using spherical indentation[J]. Materials Science and Engineering A, 2018, 711:44-61. [55] Johnson K L. The correlation of indentation experiments[J]. Journal of the Mechanics and Physics of Solids, 1970, 18(2):115-126. [56] Anuja J, Narasimhan R, Ramamurty U. An expanding cavity model for indentation analysis of shape memory alloys[J]. Journal of Applied Mechanics, 2019, 87(3):1-26. [57] Won J, Kim S, Kwon O M, et al. Evaluation of tensile yield strength of high-density polyethylene in flat-ended cylindrical indentation:An analytic approach based on the expanding cavity model[J]. Journal of Materials Research, 2020, 35(2):1-9. [58] Gao X L, Jing X N, Subhash G. Two new expanding cavity models for indentation deformations of elastic strain-hardening materials[J]. International Journal of Solids and Structures, 2005, 43(7):2193-2208. [59] Kang S K, Kim Y C, Kim K H, et al. Extended expanding cavity model for measurement of flow properties using instrumented spherical indentation[J]. International Journal of Plasticity, 2013, 49:1-15. [60] Narasimhan R. Analysis of indentation of pressure sensitive plastic solids using the expanding cavity model[J]. Mechanics of Materials, 2004, 36(7):633-645. [61] Gao X L, Jing X N, Subhash G. Two new expanding cavity models for indentation deformations of elastic strain-hardening materials[J]. International Journal of Solids and Structures, 2006, 43(7):2193-2208. [62] Gao X L. An expanding cavity model incorporating strain-hardening and indentation size effects[J]. International Journal of Solids and Structures, 2006, 43(21):6615-6629. [63] Zhang T H, Yu C, Peng G J, et al. Identification of the elastic-plastic constitutive model for measuring mechanical properties of metals by instrumented spherical indentation test[J]. MRS Communications, 2017, 7(2):1-8. [64] Zhan X P, Wu J J, Wu H F, et al. A new modified ECM approach on the identification of plastic anisotropic properties by spherical indentation[J]. Materials & Design, 2017, 139:392-408. [65] Chen H, Cai L X. An elastic-plastic indentation model for different geometric indenters and its applications[J]. Materials Today Communications, 2020, 25:101440. [66] 张希润, 蔡力勋, 陈辉. 基于能量密度等效的超弹性压入模型与双压试验方法[J]. 力学学报, 2020, 52(3):787-796. ZHANG Xirun, CAI Lixun, CHEN Hui. Hyperelastic indentation models and the dual-indentation method based on energy density equivalence[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(3):787-796. [67] 张志杰, 蔡力勋, 陈辉, 等. 金属材料的强度与应力-应变关系的球压入测试方法[J]. 力学学报, 2019, 51(1):159-169. ZHANG Zhijie, CAI Lixun, CHEN Hui, et al. Spherical indentation method to determine stress-strain relations and tensile strength of metallic materials[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1):159-169. [68] Chen H, Cai L X. Theoretical model for predicting uniaxial stress-strain relation by dual conical indentation based on equivalent energy principle[J]. Acta Materialia, 2016, 121:181-189. [69] LIU X K, Cai L X, Chen H, et al. Semi-analytical model for flat indentation of metal materials and its applications[J]. Chinese Journal of Aeronautics, 2020, 33(12):3266-3277. [70] Chen H, Cai L X. Theoretical conversions of different hardness and tensile strength for ductile materials based on stress-strain curves[J]. Metallurgical and Materials Transactions A, 2018, 49(4):1090-1101. [71] 张志杰, 郑鹏飞, 陈辉, 等. 基于能量等效原理的金属材料硬度预测方法[J]. 工程力学, 2021, 38(3):17-26. ZHANG Zhijie, ZHENG Pengfei, CHEN Hui, et al. The method for hardness prediction of metal materials based on energy equivalence principle[J]. Engineering Mechanics, 2021, 38(3):17-26. [72] 国家市场监督管理总局, 中国国家标准化管理委员会. GB/T 37782-2019. 金属材料压入试验强度、硬度和应力-应变曲线的测定应力[S]. 北京:中国标准出版社, 2019. State Administration for Market Regulation, Standardization Administration of the People's Republic of China. GB/T 37782-2019. Metallic materials-indentation test-determination of strength, hardness and stress-strain curve[S]. Beijing:Standards Press of China, 2019. [73] Zhang T R, Wang S, Wang W Q. A constitutive model independent analytical method in determining the tensile properties from incremental spherical indentation tests (ISITs)[J]. International Journal of Mechanical Sciences, 2018, 148:9-19. [74] Zhang T R, Wang S, Wang W Q. A comparative study on uniaxial tensile property calculation models in spherical indentation tests (SITs)[J]. International Journal of Mechanical Sciences, 2019, 155:159-169. [75] Jiang P, Zhang T H, Feng Y H, et al. Determination of plastic properties by instrumented spherical indentation:Expanding cavity model and similarity solution approach[J]. Journal of Materials Research, 2009, 24(3):1045-1053. [76] Zhang T R, Wang S, Wang W Q. Determination of the proof strength and flow properties of materials from spherical indentation tests:An analytical approach based on the expanding cavity model[J]. Journal of Strain Analysis for Engineering Design, 2018, 53(4):225-241. [77] Chen H, Cai L X, Bao C. Equivalent-energy indentation method to predict the tensile properties of light alloys[J]. Materials & Design, 2019, 162:322-330. [78] Lawn B R, Swain M V. Microfracture beneath point indentations in brittle solids[J]. Journal of Materials Science, 1975, 10(1):113-122. [79] Lawn B R, Evans A G, Marshall D B. Elastic/plastic indentation damage in ceramics:The median/radial crack system[J]. Journal of the American Ceramic Society, 1980, 63(9-10):574-581. [80] Marimuthu K P, Rickhey F, Lee J H, et al. Spherical indentation for brittle fracture toughness evaluation by considering kinked-cone-crack[J]. Journal of the European Ceramic Society, 2017, 37(1):381-391. [81] Byun T S, Kim J W, Hong J H. A theoretical model for determination of fracture toughness of reactor pressure vessel steels in the transition region from automated ball indentation test[J]. Journal of Nuclear Materials, 1998, 252(3):187-194. [82] Haggag F M, ByunT S, Hong J H, et al. Indentation-energy-to-fracture (IEF) parameter for characterization of DBTT in carbon steels using nondestructive automated ball indentation (ABI) technique[J]. Scripta Materialia, 1998, 38(4):645-651. [83] Byun T S, Kim S H, Lee B S, et al. Estimation of fracture toughness transition curves of RPV steels from ball indentation and tensile test data[J]. Journal of Nuclear Materials, 2000, 277(2-3):263-273. [84] Lee J S, Jang J I, Lee B W, et al. An instrumented indentation technique for estimating fracture toughness of ductile materials:A critical indentation energy model based on continuum damage mechanics[J]. Acta Materialia, 2006, 54(4):1101-1109. [85] Lemaitre J. A continuous damage mechanics model for ductile fracture[J]. Journal of Engineering Materials and Technology, 1985, 107(1):83-89. [86] Andersson H. Analysis of a model for void growth and coalescence ahead of a moving crack tip[J]. Journal of the Mechanics and Physics of Solids, 1977, 25(3):217-233. [87] Ghosh S, Das G. Effect of pre-strain on the indentation fracture toughness of high strength low alloy steel by means of continuum damage mechanics[J]. Engineering Fracture Mechanics, 2011, 79:126-137. [88] Amiri S, Lecis N, Manes A, et al. A study of a micro-indentation technique for estimating the fracture toughness of Al6061-T6[J]. Mechanics Research Communications, 2014, 58:10-16. [89] Li J, Li F G, He M, et al. Indentation technique for estimating the fracture toughness of 7050 aluminum alloy with the Berkovich indenter[J]. Materials & Design, 2012, 40:176-184. [90] Li J H, Li F G, Ma X K, et al. A strain-dependent ductile damage model and its application in the derivation of fracture toughness by micro-indentation[J]. Materials & Design, 2015, 67:623-630. [91] 邹镔, 魏中坤, 关凯书. 用连续球压痕法评价钢断裂韧度[J]. 材料科学与工程学报, 2016, 34(4):577-580. ZOU Bin, WEI Zhongkun, GUAN Kaishu. Fracture toughness evaluation of steel by continuous ball indentation test[J]. Journal of Materials Science and Engineering, 2016, 34(4):577-580. [92] Yu F, Ben Jar P Y, Hendry M T. Indentation for fracture toughness estimation of high-strength rail steels based on a stress triaxiality-dependent ductile damage model[J]. Theoretical and Applied Fracture Mechanics, 2018, 94:10-25. [93] Yu F, Ben Jar P Y, Hendry M T, et al. Fracture toughness estimation for high-strength rail steels using indentation test[J]. Engineering Fracture Mechanics, 2018, 204:469-481. [94] 张国新, 王威强, 王尚. 自动球压痕法估测Q235B钢的断裂韧度[J]. 机械强度, 2018, 40(5):1205-1208. ZHANG Guoxin, WANG Weiqiang, WANG Shang. Use of automated ball indentation method to evaluate the fracture toughness of Q235B steel[J]. Journal of Mechanical Strength, 2018, 40(5):1205-1208. [95] Jeon S W, Lee K W, Kim J Y, et al. Estimation of fracture toughness of metallic materials using instrumented indentation:Critical indentation stress and strain model[J]. Experimental Mechanics, 2017, 57(7):1013-1025. [96] Zhang T R, Wang S, Wang W Q. A unified energy release rate based model to determine the fracture toughness of ductile metals from unnotched specimens[J]. International Journal of Mechanical Sciences, 2018, 150:35-50. [97] Zhang T R, Wang S, Wang W Q. A comparative study on fracture toughness calculation models in spherical indentation tests (SITs) for ductile metals[J]. International Journal of Mechanical Sciences, 2019, 160:114-128. [98] Zhang T R, Wang S, Wang W Q. Improved methods to determine the elastic modulus and area reduction rate in spherical indentation tests[J]. Materials Testing, 2018, 60(4):355-362. [99] ZHANG X W, WEN J F, ZHANG X C, et al. Effects of the stress state on plastic deformation and ductile failure:Experiment and numerical simulation using a newly designed tension-shear specimen[J]. Fatigue & Fracture of Engineering Materials & Structures, 2019, 42(9):2079-2092. [100] ISO/TR 29381-2008. Metallic materials-Measurement of mechanical properties by an instrumented indentation test-indentation tensile properties[R]. ISO, 2008. [101] 国家市场监督管理总局, 国家标准化管理委员会. GB/T 39635-2020金属材料仪器化压入法测定压痕拉伸性能和残余应力[S]. 北京:中国标准出版社, 2020. State Administration for Market Regulation, Standardization Administration of the People's Republic of China. GB/T 39635-2020. Metallic materials-Measurement of indentation tensile properties and residual stresses by an instrumented indentation test[S]. Beijing:Standards Press of China, 2020. [102] NAKAMURA T, GU Y. Identification of elastic-plastic anisotropic parameters using instrumented indentation and inverse analysis[J]. Mechanics of Materials, 2007, 39(4):340-356. [103] YONEZU A, KUWAHARA Y, YONE K, et al. Estimation of the anisotropic plastic property using single spherical indentation:An FEM study[J]. Computational Materials Science, 2010, 47(2):611-619. [104] WU J J, WANG M Z, HUI Y, et al. Identification of anisotropic plasticity properties of materials using spherical indentation imprint mapping[J]. Materials Science and Engineering A, 2018, 723(18):269-278. |
[1] | 徐刚, 罗开玉, 鲁金忠. 激光定向能量沉积IN718/316L异质金属结构界面组织及力学性能研究[J]. 机械工程学报, 2024, 60(1): 179-189. |
[2] | 谢寅, 滕庆, 孙闪闪, 程坦, 白洁, 马瑞, 蔡超, 魏青松. 热等静压温度对激光选区熔化成形GH3536裂纹和组织性能的影响[J]. 机械工程学报, 2023, 59(4): 25-33. |
[3] | 李鹤飞, 张鹏, 张哲峰. 高强钢断裂韧性与疲劳裂纹扩展评价方法研究进展[J]. 机械工程学报, 2023, 59(16): 18-31. |
[4] | 王栓程, 杨冰, 廖贞, 肖守讷, 康国政, 阳光武, 朱涛. 金属材料疲劳短裂纹萌生与扩展研究综述[J]. 机械工程学报, 2023, 59(16): 32-53. |
[5] | 王磊磊, 吕飞阅, 高转妮, 虞文军, 高川云, 占小红. 电弧增材制造2319铝合金交叉桁条结构微观组织与拉伸性能研究[J]. 机械工程学报, 2023, 59(1): 267-277. |
[6] | 吴润宝, 徐刚, 罗开玉, 王长雨, 鲁金忠. 热处理对激光增材In718/316L功能梯度材料组织和性能的影响[J]. 机械工程学报, 2022, 58(19): 293-305. |
[7] | 刘海波, 刘天然, 李亚鹏, 王永青. 金属材料表面残余应力超声测量方法[J]. 机械工程学报, 2021, 57(12): 118-125. |
[8] | 闫泰起, 唐鹏钧, 陈冰清, 楚瑞坤, 郭绍庆, 熊华平. 退火温度对激光选区熔化AlSi10Mg合金微观组织及拉伸性能的影响[J]. 机械工程学报, 2020, 56(8): 37-45. |
[9] | 闫泰起, 唐鹏钧, 陈冰清, 高祥熙, 楚瑞坤, 熊华平. 能量密度对激光选区熔化成形AlSi10Mg合金缺陷及力学性能的影响[J]. 机械工程学报, 2020, 56(24): 96-105. |
[10] | 曹旭祥, 颜廷俊, 李鹏鹏, 王亭沂, 李风. 热采井口装置材料30CrMo的拉伸及蠕变性能研究[J]. 机械工程学报, 2020, 56(22): 112-119. |
[11] | 赵玉华, 满佳乐, 刘玉林, 陆皖皖. 凝固速度及热处理工艺对Al-8Ca组织性能的影响[J]. 机械工程学报, 2018, 54(18): 62-67. |
[12] | 韩啸, 金勇, 杨鹏, 李小阳, 侯文彬. 胶层厚度对胶粘剂I型断裂韧性影响试验和仿真研究[J]. 机械工程学报, 2018, 54(10): 43-52. |
[13] | 武永红, 李永堂, 齐会萍, 付建华. 基于铸辗连续成形的42CrMo铸造环坯高温力学性能及临界应变计算*[J]. 机械工程学报, 2017, 53(6): 45-52. |
[14] | 赵德望, 任大鑫, 赵坤民, 郭杏林, 杨文平. 工艺参数对镁钛异质金属超声波点焊接头拉伸性能及疲劳性能的影响[J]. 机械工程学报, 2017, 53(24): 118-125. |
[15] | 何广伟, 包陈, 蔡力勋, 赵兴华. COEC微小试样用于延性断裂行为评定的规则化法研究[J]. 机械工程学报, 2017, 53(20): 61-68. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||