机械工程学报 ›› 2023, Vol. 59 ›› Issue (20): 154-178.doi: 10.3901/JME.2023.20.154
宋燕利1,2, 刘煜键1, 方志凌1, 王祥1, 路珏1,2, 华林1,2, 刘鹏3, 严建文4
收稿日期:
2023-06-15
修回日期:
2023-08-08
出版日期:
2023-10-20
发布日期:
2023-12-08
通讯作者:
华林(通信作者),男,1962年出生,博士,教授,博士研究生导师。主要研究方向为高性能成形制造技术与装备。E-mail:hualin@whut.edu.cn
作者简介:
宋燕利,男,1979年出生,博士,教授,博士研究生导师。主要研究方向为车辆与运载装备轻量化制造技术。E-mail:ylsong@whut.edu.cn;路珏,男,1991年出生,博士,助理研究员。主要研究方向为高强轻质复杂构件高性能制造技术。E-mail:lujue@whut.edu.cn
基金资助:
SONG Yanli1,2, LIU Yujian1, FANG Zhiling1, WANG Xiang1, LU Jue1,2, HUA Lin1,2, LIU Peng3, YAN Jianwen4
Received:
2023-06-15
Revised:
2023-08-08
Online:
2023-10-20
Published:
2023-12-08
摘要: 热冲压能够显著提升超高强钢板材成形性能、减小变形抗力和回弹,是实现汽车轻量化和关键性能提升的重要途径。近年来超高强钢热冲压技术发展迅猛,市场需求巨大,新型热冲压工艺装备随之成为相关制造领域的研究热点。本文首先从形变规律与本构模型、相变规律与相变模型、损伤断裂行为与判定准则等方面综述了超高强钢构件热力耦合形变-相变机理;其次,对传统热冲压、高强韧等强度热冲压、变强度热冲压等热冲压成形工艺进行了详细阐述和分析。然后,结合热冲压工艺特点和实际生产需求,介绍了伺服压力机、热冲压模具、加热设备及生产线等最新发展;最后,针对双碳战略、人工智能等国内外形势,对超高强钢热冲压产业需求和发展趋势进行了展望。
中图分类号:
宋燕利, 刘煜键, 方志凌, 王祥, 路珏, 华林, 刘鹏, 严建文. 超高强钢构件热冲压成形技术与应用[J]. 机械工程学报, 2023, 59(20): 154-178.
SONG Yanli, LIU Yujian, FANG Zhiling, WANG Xiang, LU Jue, HUA Lin, LIU Peng, YAN Jianwen. Hot Stamping Technology and Application of Ultra-high Strength Steel Components[J]. Journal of Mechanical Engineering, 2023, 59(20): 154-178.
[1] 节能与新能源汽车技术路线图战略咨询委员会,中国汽车工程学会. 节能与新能源汽车技术路线图[M]. 北京:机械工业出版社,2016. Energy Saving and New Energy Vehicle Technology Roadmap Strategic Advisory Committee,China Society of Automotive Engineering. Energy saving and new energy vehicle technology roadmap [M]. Beijing:China Machine Press,2016. [2] The World Steel Association. Steel in automotive [EB/OL]. [2023-08-02]. https://worldsteel.org/steel-topics/steel-markets/automotive/. [3] NORRBOTTENS J. Manufacturing a hardened steel article:Sweden,GB1490535A[P]. 1977-11-02. [4] STEINBEISS H,SO H,MICHELITSH T,et al. Method for optimizing the cooling design of hot stamping tools [J]. Production Engineering,2007,1(2):149-155. [5] KARBASIAN H,TEKKAYA A E. A review on hot stamping[J]. Journal of Materials Processing Technology,2010,210(15):2103-2118. [6] TONG C,RONG Q,YARDLEY V A,et al. Investigation of deformation behaviour with yield point phenomenon in cold-rolled medium-Mn steel under hot stamping conditions[J]. Journal of Materials Processing Technology,2022,306:117623. [7] JING C,YE D,ZHAO J,et al. Effect of hot stamping and quenching & partitioning process on microstructure and mechanical properties of ultra-high strength steel[J]. Materials Research Express,2021,8(3):036506. [8] ZHANG M,SUN X,WANG Y. Elevated temperature deformation characteristics of 15Mn7 steels[J]. Procedia Manufacturing,2019,37:360-366. [9] 林建平,王立影,田浩彬,等. 超高强度钢热流变行为[J]. 塑性工程学报,2009,16(2):180-183. LIN Jianping,WANG Liying,TIAN Haobin,et al. Thermal rheological behavior of ultra-high strength steel[J]. Chinese Journal of Plastic Engineering,2009,16(2):180-183. [10] MERKLEIN M,LECHLER J. Investigation of the thermo-mechanical properties of hot stamping steels[J]. Journal of Materials Processing Technology,2006,177(1-3):452-455. [11] LI N,SUN C Y,GUO N,et al. Experimental investigation of boron steel at hot stamping conditions[J]. Journal of Materials Processing Technology,2016,228:2-10. [12] NAKAGAWA Y,MORI K,MAENO T. Springback-free mechanism in hot stamping of ultra-high-strength steel parts and deformation behaviour and quenchability for thin sheet[J]. The International Journal of Advanced Manufacturing Technology,2018,95:459-467. [13] LU J,SONG Y L,HUA L,et al. Influence of thermal deformation conditions on the microstructure and mechanical properties of boron steel[J]. Materials Science and Engineering A,2017,701:328-337. [14] 闵峻英,林建平. 金属板材热辅助塑性成形理论[M]. 上海:同济大学出版社,2014. MIN Junying,LIN Jianping. Theory of thermo-assisted plastic forming of metal sheet[M]. Shanghai:Tongji University Press,2014. [15] AKERSTROM P,BERGMAN G,OLDENBURG M. Numerical implementation of a constitutive model for simulation of hot stamping[J]. Modelling and Simulation in Materials Science and Engineering,2007,15(2):105. [16] NADERI M,DURRENBERGER L,MOLINARI A,et al. Constitutive relationships for 22MnB5 boron steel deformed isothermally at high temperatures[J]. Materials Science and Engineering A,2008,478(1-2):130-139. [17] ALEXANDER B,MICHAEL J,MARY A,et al. The influence of martensite,bainite and ferrite on the as-quenched constitutive response of simultaneously quenched and deformed boron steel–Experiments and model[J]. Materials & Design,2014,55:509-525. [18] HU P,SHI D Y,YING L,et al. The finite element analysis of ductile damage during hot stamping of 22MnB5 steel[J]. Materials& Design,2015,69:141-152. [19] ZHU B,LIANG W K,GUI Z X,et al. A thermo-plastic-martensite transformation coupled constitutive model for hot stamping[J]. Metallurgical and Materials Transactions A,2017,48(3):1375-1382. [20] ZHOU J,YANG X M,MU Y H,et al. Numerical simulation and experimental investigation of tailored hot stamping of boron steel by partial heating[J]. Journal of Materials Research and Technology,2021,14:1347-1365. [21] LU J,HUA L,SONG Y L,et al. Elevated plastic flow behavior of high strength boron steel based on the modified Zerilli–Armstrong model[C]//Advanced High Strength Steel and Press Hardening:Proceedings of the 2nd International Conference (ICHSU2015). 2016:41-46. [22] LIN J,LIU Y. A set of unified constitutive equations for modelling microstructure evolution in hot deformation[J]. Journal of Materials Processing Technology,2003,143:281-285. [23] ZHANG R Q,SHI Z S,YARDLEY V A,et al. A CDM-based unified viscoplastic constitutive model of FLCs and FFLCs for boron steel under hot stamping conditions[J]. International Journal of Damage Mechanics,2022,31(9):1373-1395. [24] 沈玉含. 超高强度钢车身构件热冲压成形与相变机理研究[D]. 武汉:武汉理工大学,2017. SHEN Yuhan. Study on hot stamping forming and phase change mechanism of ultra-high strength steel body components[D]. Wuhan:Wuhan University of Technology,2017. [25] LI H Y,WEI D D,LI Y H,et al. Application of artificial neural network and constitutive equations to describe the hot compressive behavior of 28CrMnMoV steel[J]. Materials & Design,2012,35:557-562. [26] QUAN G,ZHAN Z,WANG T,et al. Modeling the hot tensile flow behaviors at ultra-high-strength steel and construction of three-dimensional continuous interaction space for forming parameters[J]. High Temperature Materials and Processes,2017,36(1):29-43. [27] MURUGESAN M,YU J H,JUNG K S,et al. Supervised machine learning approach for modeling hot deformation behavior of medium carbon steel[J]. Steel Research International,2023,94(2):2200188. [28] SALARI S,NADERI M,BLECK W. Constitutive modeling during simultaneous forming and quenching of a boron bearing steel at high temperatures[J]. Journal of Materials Engineering and Performance,2015,24:808-815. [29] FEI W J,LI H G,LI X,et al. Flow behaviors of 22MnB5 steel at a high temperature[J]. Materials Research Express,2019,6(7):076527. [30] LUO P,LI X,ZHANG W,et al. The study of phase transformation behaviors for 38MnB5Nb ultra high-strength steel by CCT curves and TTT curves[J]. Metals,2023,13(2):190. [31] LIU S,LONG M,AI S,et al. Evolution of phase transition and mechanical properties of ultra-high strength hot-stamped steel during quenching process[J]. Metals,2020,10(1):138. [32] MIN J,LIN J,LI F. On the ferrite and bainite transformation in isothermally deformed 22MnB5 steels[J]. Materials Science and Engineering A,2012,550:375-387. [33] NIKRAVESH M,NADERI M,AKBARI G H,et al. Phase transformations in a simulated hot stamping process of the boron bearing steel[J]. Materials & Design,2015,84:18-24. [34] SHEN Y,SONG Y,HUA L,et al. Influence of plastic deformation on martensitic transformation during hot stamping of complex structure auto parts[J]. Journal of Materials Engineering and Performance,2017,26:1830-1838. [35] MORI K,BARIANI P F,BEHRENS B A,et al. Hot stamping of ultra-high strength steel parts[J]. Cirp Annals,2017,66(2):755-777. [36] Koistinen D P,Marburger R E. A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels[J]. Acta Metallurgica,1959,7(1):59-60. [37] KIRKALDY J S. Prediction of microstructure and hardenability in low alloy steels[C]//Proceedings of the International Conference on Phase Transformation in Ferrous Alloys,1983. AIME,1983. [38] BOK H H,CHOI J W,BARLAT F,et al. Thermo-mechanical-metallurgical modeling for hot-press forming in consideration of the prior austenite deformation effect[J]. International Journal of Plasticity,2014,58:154-183. [39] CHEN X,XIAO N,LI D,et al. The finite element analysis of austenite decomposition during continuous cooling in 22MnB5 steel[J]. Modelling and Simulation in Materials Science and Engineering,2014,22(6):065005. [40] QUAN G,ZHAN Z,ZHANG L,et al. A study on the multi-phase transformation kinetics of ultra-high-strength steel and application in thermal-mechanical-phase coupling simulation of hot stamping process[J]. Materials Science and Engineering A,2016,673:24-38. [41] SCHICCHI D S,HUNKEL M. Influence of the parent phase on the bainitic transformation under large stress of manganese-boron steel 22MnB5[J]. Materials Characterization,2019,151:457-469. [42] LI Y,CHEN Y,LI S. Phase transformation testing and modeling for hot stamping of boron steel considering the effect of the prior austenite deformation[J]. Materials Science and Engineering A,2021,821:141447. [43] SAMADIAN P,ABEDINI A,BUTCHER C,et al. Microstructure-based modelling of flow and fracture behavior of tailored microstructures of Ductibor® 1000-AS steel[J]. Metals,2022,12(10):1770. [44] LI X,XIAO L,ZHENG Q,et al. Study on microstructure and properties of tailored hot-stamped U-shaped parts based on temperature field control[J]. Metals,2019,9(5):593. [45] CHAI Z,LU Q,HU J,et al. Effect of retained austenite on the fracture behavior of a novel press-hardened steel[J]. Journal of Materials Science & Technology,2023,135:34-45. [46] HABIBI N,ZAREI-HANZAKI A,ABEDI H R. An investigation into the fracture mechanisms of twinning-induced-plasticity steel sheets under various strain paths[J]. Journal of Materials Processing Technology,2015,224:102-116. [47] BRÜNIG M,GERKE S,HAGENBROCK V. Stress-state-dependence of damage strain rate tensors caused by growth and coalescence of micro-defects[J]. International Journal of Plasticity,2014,63:49-63. [48] LOU Y S,CHEN L,CLAUSMEYER T,et al. Modeling of ductile fracture from shear to balanced biaxial tension for sheet metals[J]. Int. J. Solids Struct.,2017,112:169-184. [49] MOHR D,EBNOETHER F. Plasticity and fracture of martensitic boron steel under plane stress conditions[J]. Int. J. Solids Struct.,2009,46:3535-3547. [50] ELLER T K,GREVE L,ANDRES M T,et al. Plasticity and fracture modeling of quench-hardenable boron steel with tailored properties[J]. Journal of Materials Processing Technology,2014,214(6):1211-1227. [51] TANG B,WU F,WANG Q,et al. Damage prediction of hot stamped boron steel 22MnB5 with a microscopic motivated ductile fracture criterion:Experiment and simulation[J]. International Journal of Mechanical Sciences,2020,169:105302. [52] SPEER J G,MATLOCK D K,COOMAN B C,et al. Carbon partitioning into austenite after martensite transformation[J]. Acta Materialia,2003,51(9):2611-2622. [53] SPEER J G,EDMONDS D V,Rizzo F C,et al. Partitioning of carbon from supersaturated plates of ferrite,with application to steel processing and fundamentals of the bainite transformation[J]. Current Opinion in Solid State and Materials Science,2004,8(3-4):219-237. [54] CLARKE A J,SPEER J G,MILLER M K,et al. Carbon partitioning to austenite from martensite or bainite during the quench and partition (Q-P) process:A critical assessment[J]. Acta Materialia,2008,56(1):16-22. [55] SPEER J G,MOOR E,FINDLEY K O,et al. Analysis of microstructure evolution in quenching and partitioning automotive sheet steel[J]. Metallurgical and Materials Transactions A,2011,42:3591-3601. [56] ZHU B,LIU Z,WANG Y,et al. Application of a model for quenching and partitioning in hot stamping of high-strength steel[J]. Metallurgical and Materials Transactions A,2018,49:1304-1312. [57] MAGALHÃES C H X M,SILVA P H,AZZI P C,et al. Effect of austenite grain size on phase transformation and Q&P design for a commercial CMnSi steel[J]. Journal of Materials Engineering and Performance,2023:1-15. [58] HSU T Y. Quenching-partitioning-tempering process for ultra-high strength steel[J]. International Heat Treatment and Surface Engineering,2008,2(2):64-67. [59] LIU H,LU X,JIN X,et al. Enhanced mechanical properties of a hot stamped advanced high-strength steel treated by quenching and partitioning process[J]. Scripta Materialia,2011,64(8):749-752. [60] LI G Y,MA M T,MAO X P,et al. New process of hot stamping in combination with QPT treatment for higher strength-ductility auto-parts[C]//Advanced Materials Research. Trans Tech Publications Ltd,2015,1063:223-231. [61] XU Y,GONG Y,DU H,et al. A newly-designed hot stamping plus non-isothermal Q&P process to improve mechanical properties of commercial QP980 steel[J]. International Journal of Lightweight Materials and Manufacture,2020,3(1):26-35. [62] ECHEVERRI E A A,NISHIKAWA A S,MASOUMI M,et al. In situ synchrotron X-ray diffraction and microstructural studies on cold and hot stamping combined with quenching & partitioning processing for development of third-generation advanced high strength steels[J]. Metals,2022,12(2):174. [63] WANG Z,GUO X,DING H,et al. Research on hot stamping-carbon partition-intercritical annealing process of medium manganese steel[J]. Materials,2023,16(2):576. [64] 金学军,龚煜,韩先洪,等. 先进热成形汽车钢制造与使用的研究现状与展望[J]. 金属学报,2020,56(4):411-428. JIN Xuejun,GONG Yu,HAN Xianhong,et al. Research status and prospect of manufacturing and use of advanced press hardening automotive steel[J]. Acta Metallurgica Sinica,2020,56(4):411-428. [65] BARDELCIK A,WORSWICK M J,WELLS M A. The influence of martensite,bainite and ferrite on the as-quenched constitutive response of simultaneously quenched and deformed boron steel-Experiments and model[J]. Materials & Design,2014,55:509-525. [66] SRITHANANAN P,KAEWTATIP P,UTHAISANGSUK V. Micromechanics-based modeling of stress-strain and fracture behavior of heat-treated boron steels for hot stamping process[J]. Materials Science and Engineering A,2016,667:61-76. [67] GOLLING S,FRÓMETA D,CASELLAS D,et al. Influence of microstructure on the fracture toughness of hot stamped boron steel[J]. Materials Science and Engineering A,2019,743:529-539. [68] 谢光驹,宋燕利,路珏,等. 基于复相组织精细调控的硼钢高强韧热冲压工艺[J]. 塑性工程学报,2022,29(2):35-46. XIE Guangju,SONG Yanli,LU Jue,et al. High strength and toughness hot stamping process of boron steel based on fine regulation of complex phase structure[J]. Chinese Journal of Plastic Engineering,2022,29(2):35-46. [69] MERKLEIN M,WIELAND M,LECHNER M,et al. Hot stamping of boron steel sheets with tailored properties:A review[J]. Journal of Materials Processing Technology,2016,228:11-24. [70] MORI K. Smart hot stamping of ultra-high strength steel parts[J]. Transactions of Nonferrous Metals Society of China,2012,22:496-503. [71] MORI K,MAENO T,MONGKOLKAJI K. Tailored die quenching of steel parts having strength distribution using bypass resistance heating in hot stamping[J]. Journal of Materials Processing Technology,2013,213(3):508-514. [72] LANDGREBE D,PUTZ M,SCHIECK F,et al. Towards efficient,interconnected and flexible value chains-examples and innovations from research on production technologies[C]//Proceedings of the 5th International Conference on Accuracy in Forming Technology,Chemnitz,Germany. 2015:10-11. [73] 周威佳,刘洪伟,叶知春,等. 高强钢分区热冲压U形件梯度性能[J]. 精密成形工程,2016,8(6):44-48. ZHOU Weijia,LIU Hongwei,YE Zhichun,et al. Gradient performance of high-strength steel zoned hot stamped U-shaped parts[J]. Precision Forming Engineering,2016,8(6):44-48. [74] MU Y,WANG B,ZHOU J,et al. Hot stamping of boron steel using partition heating for tailored properties:experimental trials and numerical analysis[J]. Metallurgical and Materials Transactions A,2017,48:5467-5479. [75] BAO L,LIU W J,WANG B,et al. Experimental investigation on partition controllable induction heating-hot stamping process of high-strength boron alloyed steel plates with designable temperature patterns[J]. Journal of Materials Research and Technology,2020,9(6):13963-13976. [76] NIKRAVESH M,NADERI M,AKBARI G H. Influence of hot plastic deformation and cooling rate on martensite and bainite start temperatures in 22MnB5 steel[J]. Materials Science and Engineering A,2012,540:24-29. [77] 佟莹,高林,张开开,等. 超高强度钢板的梯度控温相变强化模式[J]. 材料导报,2019,33(20):3494-3501. TONG Ying,GAO Lin,ZHANG Kaikai,et al. Gradient temperature control phase change strengthening mode of ultra-high strength steel plate[J]. Materials Reports,2019,33(20):3494-3501. [78] GEORGE R,BARDELCIK A,WORSWICK M J. Hot forming of boron steels using heated and cooled tooling for tailored properties[J]. Journal of Materials Processing Technology,2012,212(11):2386-2399. [79] TANG B T,BRUSCHI S,GHIOTTI A,et al. Numerical modelling of the tailored tempering process applied to 22MnB5 sheets[J]. Finite Elements in Analysis and Design,2014,81:69-81. [80] OMER K,KORTENAAR L,BUTCHER C,et al. Testing of a hot stamped axial crush member with tailored properties-Experiments and models[J]. International Journal of Impact Engineering,2017,103:12-28. [81] NAKAGAWA Y,MORI K,SUZUKI Y,et al. Tailored tempering without die heating in hot stamping of ultra-high strength steel parts[J]. Materials & Design,2020,192:108704. [82] MORI K,OKUDA Y. Tailor die quenching in hot stamping for producing ultra-high strength steel formed parts having strength distribution[J]. CIRP Annals,2010,59(1):291-294. [83] 陈扬,孙正启,张晓欣,等. 热冲压模具温度和贴合状态对22MnB5组织性能的影响[J]. 塑性工程学报,2021,28(9):11-18. CHEN Yang,SUN Zhengqi,ZHANG Xiaoxin,et al. Effect of hot stamping die temperature and bonding state on microstructure properties of 22MnB5[J]. Chinese Journal of Plastic Engineering,2021,28(9):11-18. [84] ABDOLLAHPOOR A,CHEN X,PEREIRA M P,et al. Sensitivity of the final properties of tailored hot stamping components to the process and material parameters[J]. Journal of Materials Processing Technology,2016,228:125-136. [85] 华林,刘佳宁,宋燕利. 获得力学性能梯度热冲压零件的方法及模具:中国,CN103521581B[P]. 2015-12-02. HUA Lin,LIU Jianing,SONG Yanli. Method and mold for obtaining mechanical properties gradient hot stamping parts:China,CN103521581B[P]. 2015-12-02. [86] 刘润泽,宋燕利,刘鹏,等. 基于Gray-Taguchi方法的汽车中立柱强度分布多目标优化设计[J]. 塑性工程学报,2021,28(1):29-37. LIU Runze,SONG Yanli,LIU Peng,et al. Multi-objective optimization design of automobile neutral column strength distribution based on Gray-Taguchi method[J]. Chinese Journal of Plastic Engineering,2021,28(1):29-37. [87] BEHRENS B A,HÜBNER S,CHUGREEV A,et al. Investigation of masking concepts for influencing the austenitization process during press hardening[J]. Procedia Manufacturing,2018,15:1095-1102. [88] YING L,GAO T,DAI M,et al. Experimental and numerical investigation on temperature field and tailored mechanical properties distribution of 22MnB5 steel in spray quenching process[J]. Journal of Manufacturing Processes,2020,57:930-956. [89] KNEZAR K,MANZENREITER T,FADERL J,et al. Formhärten von feuerverzinktem 22MnB5:ein stabiler und reproduzierbarer Prozess[J]. Tagungsband zum,2007,2:131-148. KNEZAR K,MANZENREITER T,FADERL J,et al. Hot stamping of galvanized 22MnB5:a stable and repeatable process[J]. Tagungsband zum,2007,2:131-148. [90] WANG Z,LIU P,XU Y,et al. Hot stamping of high strength steel with tailored properties by two methods[J]. Procedia Engineering,2014,81:1725-1730. [91] BOURQUE C,BARDELCIK A,CHIRIAC C,et al. Short cycle tempering of an 1800 MPa grade of press hardening steel[C]//Materials Science and Technology,Portland. 2019:526-533. [92] GOBINATH R,KUMAR N N,BALACHANDRAN G. Development of a silicon alloyed hardened and tempered ultra high strength Steel[J]. Transactions of the Indian Institute of Metals,2022,75(9):2211-2219. [93] MUNERA D,PIC A,KHALIL A D,et al. Innovative press hardened steel based laser welded blanks solutions for weight savings and crash safety improvements[J]. SAE International Journal of Materials and Manufacturing,2009,1:472-479. [94] LIU J,WANG A L,ZHENG Y,et al. Hot stamping of AA6082 tailor welded blanks for automotive applications[J]. Procedia Engineering,2017,207:729-734. [95] ALMEIDA D T,CLARKE T G R,SOUZA J H C,et al. The effect of laser welding on microstructure and mechanical properties in heavy-gage press hardening steel alloys[J]. Materials Science and Engineering A,2021,821:141341. [96] XU W L,HUANG Z B,WAN Y H. Research status of advanced hot forming technology[J]. Advanced Materials Research,2015,1063:169-176. [97] WARRIAN P J,SMITKA M. The changing dynamics of innovation in the auto supply chain[J]. Journal of Business and Economics,2015,6(4):799-821. [98] 杨雪梅,黄得群,时丕见,等. 22MnB5热成形门环试制工艺及缺陷分析[J]. 锻造与冲压,2021(10):34-36. YANG Xuemei,HUANG Dequn,SHI Pijian,et al. Trial production process and defect analysis of 22MnB5 hot hardening door ring[J]. Forging & Stamping,2021(10):34-36. [99] SONG Y,HUA L,CHU D,et al. Characterization of the inhomogeneous constitutive properties of laser welding beams by the micro-Vickers hardness test and the rule of mixture[J]. Materials & Design,2012,37(5):19-27. [100] SONG Y,HUA L,Meng F. Inhomogeneous constructive modeling of laser welded bead based on nanoindentation test[J]. Ironmaking& Steelmaking,2012,39(2):95-103. [101] SONG Y,HUA L. Influence of inhomogeneous constitutive properties of weld materials on formability of tailor welded blanks[J]. Materials Science and Engineering A,2012,552(8):222-229. [102] SONG Y L,SHE J L,LU J,et al. Integral hot stamping process of tailor-welded door ring based on the multi-objective optimization genetic algorithm[C]//Proceedings of the 6th International Conference on Advanced High Strength Steel and Press Hardening (ICHSU 2022). Springer Nature,2023,2:301. [103] YUN S,KWON J,CHO W,et al. Performance improvement of hot stamping die for patchwork blank using mixed cooling channel designs with straight and conformal channels[J]. Applied Thermal Engineering,2020,165:114562. [104] 欧阳潇. A柱补丁板热冲压实验与有限元模拟研究[D]. 长春:吉林大学,2022. OUYANG Xiao. A-pillar patch plate hot stamping experiment and finite element simulation study[D]. Changchun:Jilin University,2022. [105] LEI C,XING Z,XU W,et al. Hot stamping of patchwork blanks:modelling and experimental investigation[J]. The International Journal of Advanced Manufacturing Technology,2017,92:2609-2617. [106] 李彦波,徐锋,耿银忠,等. 硼钢A柱补丁板热冲压工艺数值模拟与实验研究[J]. 锻压技术,2020,45(5):100-104. LI Yanbo,XU Feng,GENG Yinzhong,et al. Numerical simulation and experimental study on hot stamping process of boron steel A-pillar patch plate[J]. Forging Technology,2020,45(5):100-104. [107] YU L,GU X,QIAN L,et al. Application of tailor rolled blanks in optimum design of pure electric vehicle crashworthiness and lightweight[J]. Thin-Walled Structures,2021,161:107410. [108] KOPP R,WIEDNER C,MEYER A. Flexibly rolled sheet metal and its use in sheet metal forming[J]. Advanced Materials Research,2005,6:81-92. [109] HAN S,HWANG T,CHOI M,et al. Manufacturing of tailor-rolled blanks with thickness variations in both the longitudinal and latitudinal directions[J]. Journal of Materials Processing Technology,2018,256:172-182. [110] ZHANG H W,LIU X H,LIU L Z,et al. Study on nonuniform deformation of tailor rolled blank during uniaxial tension[J]. Acta Metallurgica Sinica (English Letters),2015,28:1198-1204. [111] YU L,GU X,QIAN L,et al. Application of tailor rolled blanks in optimum design of pure electric vehicle crashworthiness and lightweight[J]. Thin-Walled Structures,2021,161:107410. [112] 乔子路,王营,文武,等. 浅析我国伺服压力机行业发展现状[J]. 机电产品开发与创新,2022,35(1):71-74. QIAO Zilu,WANG Ying,WEN Wu,et al. Analysis of the development status of servo press industry in China[J]. Electromechanical Product Development and Innovation,2022,35(1):71-74. [113] 金风明,窦志平,韩新民. 伺服压力机在我国的发展现状[J]. 机电产品开发与创新,2012,25(1):19-21. JIN Fengming,DOU Zhiping,HAN Xinmin. Development status of servo press in China[J]. Electromechanical Product Development and Innovation,2012,25(1):19-21. [114] LANDGREBE D,RAUTENSTRAUCH A,KUNKE A,et al. The effect of cushion-ram pulsation on hot stamping[C]//AIP Conference Proceedings. AIP Publishing LLC,2016,1769(1):070014. [115] 樊索. 伺服压力机的传动分析与控制策略研究[D]. 武汉:华中科技大学,2017. FAN Suo. Research on transmission analysis and control strategy of servo press[D]. Wuhan:Huazhong University of Science and Technology,2017. [116] 莫健华,张正斌,吕言,等. 三角肘杆式伺服压力机传动机构的仿真与优化[J]. 锻压装备与制造技术,2011(1):21-25. MO Jianhua,ZHANG Zhengbin,LÜ Yan,et al. Simulation and optimization of transmission mechanism of triangle toggle servo press[J]. Forging Equipment& Manufacturing Technology,2011(1):21-25. [117] GE X,ZHU C,JIN Y. Optimization design for a new large-scale eight-link mechanical press[J]. Journal of Mechanical Science and Technology,2014,28:1403-1410. [118] LI Y,SUN Y,WANG S. Dimensional synthesis for multi-linkage of high-speed mechanical press[J]. Procedia Engineering,2014,81:1639-1644. [119] HÖBER A,BEHRENS B A,KRIMM R. Development of a design tool for servo-powertrains in forming presses [C]//Production at the Leading Edge of Technology:Proceedings of the 9th Congress of the German Academic Association for Production Technology (WGP),Springer Berlin Heidelberg,2019:93-101. [120] 李建,王珍,宋清玉. 重载伺服压力机主传动系统参数标定[J]. 锻压技术,2022,47(12):148-153,160. LI Jian,WANG Zhen,SONG Qingyu. Parameter calibration of main drive system of heavy-duty servo press[J]. Forging Technology,2022,47(12):148-153,160. [121] 徐道春,吕明青,邵珠峰,等. 基于改进复合三角函数的伺服压力机轨迹规划研究[J]. 农业机械学报,2023,54(2):450-458. XU Daochun,LÜ Mingqing,SHAO Zhufeng,et al. Research on trajectory planning of servo press based on improved composite trigonometric function[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(2):450-458. [122] 胡建国,孙友松,章争荣,等. 机械压力机传动方案设计的发展历程[J]. 锻压技术,2020,45(5):159-167. HU Jianguo,SUN Yousong,ZHANG Zhengrong,et al. Development history of transmission scheme design of mechanical press[J]. Forging Technology,2020,45(5):159-167. [123] HE J,GAO F,BAI Y J. A two-step calibration methodology of multi-actuated mechanical servo press with parallel topology[J]. Measurement,2013,46(8):2269-2277. [124] MURATA C,YABE J,ENDOU J,et al. Direct drive digital servo press with high parallel control[C]//9th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes,2013,1567:1016-1019. [125] 杨真国. 3000吨双伺服驱动肘杆式压力机主传动机构设计与优化[D]. 武汉:武汉理工大学,2023. YANG Zhenguo. Design and optimization of main drive mechanism of 3000 ton double servo drive toggle press[D]. Wuhan:Wuhan University of Technology,2023. [126] 程寅峰. 3000吨双伺服驱动肘杆式压力机控制系统设计与同步策略研究[D]. 武汉:武汉理工大学,2023. CHENG Yinfeng. Design and synchronization strategy of 3000 ton double servo drive toggle press control system[D]. Wuhan:Wuhan University of Technology,2023. [127] CHI X,HAN S. Effects of servo tensile test parameters on mechanical properties of medium-Mn steel[J]. Materials,2019,12(22):3793. [128] HALICIOGLU R,DULGER L C,BOZDANA A T. Improvement of metal forming quality by motion design[J]. Robotics and Computer-Integrated Manufacturing,2018,51:112-120. [129] YAN H S,CHEN W R. A variable input speed approach for improving the output motion characteristics of watt-type presses[J]. International Journal of Machine Tools and Manufacture,2000,40(5):675-690. [130] SONG Q Y,GUO B Y,LI J. Drawing motion profile planning and optimizing for heavy servo press[J]. The International Journal of Advanced Manufacturing Technology,2013,69(9):2819-2831. [131] LI T C,KUO C C,YANG C Y,et al. Influence of motion curve errors of direct-drive servo press on stamping properties[J]. The International Journal of Advanced Manufacturing Technology,2022,120(7-8):4461-4476. [132] KUO C C,HUANG H L,LI T C,et al. Optimization of the pulsating curve for servo stamping of rectangular cup[J]. Journal of Manufacturing Processes,2020,56:990-1000. [133] 陈岳云,郭为忠,高峰. 基于NURB曲线的伺服压力机冲压过程建模与加工工艺轨迹规划[J]. 上海交通大学学报,2009,43(1):138-142. CHEN Yueyun,GUO Weizhong,GAO Feng. Stamping process modeling and machining process trajectory planning of servo press based on NURBS curve[J]. Journal of Shanghai Jiao Tong University,2009,43(1):138-142. [134] 王昆,郭为忠,高峰. 伺服冲压工艺拟NURBS曲线建模的权因子优化调节[J]. 东华大学学报(自然科学版),2011,37(6):755-760. WANG Kun,GUO Weizhong,GAO Feng. Optimization and adjustment of weight factor for NURBS curve modeling of servo stamping process[J]. Journal of Donghua University (Natural Science Edition),2011,37(6):755-760. [135] SONG Y L,DAI D G,GENG P,et al. Formability of aluminum alloy thin-walled cylinder parts by servo hot stamping[J]. Procedia Engineering,2017,207:741-746. [136] 曹威圣. 基于混合阶次样条曲线模型的超高强钢构件伺服热冲压工艺设计[D].武汉:武汉理工大学,2023. CAO Weisheng. Servo Hot stamping process design of ultra-high strength steel components based on mixed order spline curve model [D]. Wuhan:Wuhan University of Technology,2023. [137] HOFFMANN H,SO H,STEINBEISS H. Design of hot stamping tools with cooling system[J]. CIRP Annals,2007,56(1):269-272. [138] LIM W S,CHOI H S,AHN S,et al. Cooling channel design of hot stamping tools for uniform high-strength components in hot stamping process[J]. The International Journal of Advanced Manufacturing Technology,2014,70:1189-1203. [139] 刘雪飞,李磊,石娟昌,等. 基于性能梯度分布的B柱加强件热冲压模具冷却系统研究[J]. 热加工工艺,2020,49(21):89-95,98. LIU Xuefei,LI Lei,SHI Juanchang,et al. Study on cooling system of hot stamping die for B-pillar reinforcement based on performance gradient distribution[J]. Hot Working Technology,2020,49(21):89-95,98. [140] 李奇颖,吴博雅,杨子帅,等. 循环热冲压过程中高热导率模具钢的摩擦磨损行为[J]. 材料热处理学报,2022,43(1):75-83. LI Qiying,WU Boya,YANG Zishuai,et al. Friction and wear behavior of high thermal conductivity mold steel during cyclic hot stamping[J]. Journal of Materials and Heat Treatment,2022,43(1):75-83. [141] 王卫东,曹一枢,周文涵,等. 热冲压模具钢激光熔覆Stellite钴基粉末的工艺研究[J]. 热加工工艺,2023(22):29-32. WANG Weidong,CAO Yishu,ZHOU Wenhan,et al. Study on laser cladding of Stellite6 cobalt-based powder in hot stamping die steel[J]. Hot Working Technology,2023(22):29-32. [142] HU P,YING L,HE B. Hot stamping advanced manufacturing technology of lightweight car body[M]. Singapore:Springer Singapore,2017. [143] LIU H,LEI C,XING Z. Cooling system of hot stamping of quenchable steel BR1500HS:Optimization and manufacturing methods[J]. International Journal of Advanced Manufacturing Technology,2013,69(1-4):211-223. [144] 王世魁. 变强度冲压件热成形关键技术研究[D]. 哈尔滨:哈尔滨工业大学,2014. WANG Shikui. Research on key technologies of hot forming of variable strength stamping parts[D]. Harbin:Harbin Institute of Technology,2014. [145] 任永强. 变强度汽车梁类零件热冲压成形模具的设计及优化[D]. 武汉:武汉理工大学,2016. REN Yongqiang. Design and optimization of hot stamping forming dies for variable strength automotive beam parts[D]. Wuhan:Wuhan University of Technology,2016. [146] LIANG W,LIU Y,ZHU B,et al. Conduction heating of boron alloyed steel in application for hot stamping[J]. International Journal of Precision Engineering and Manufacturing,2015,16:1983-1992. [147] 解东旋,庄蔚敏,王楠,等. 高强度钢板热冲压工艺与装备研究综述[J]. 机械工程学报,2022,58(20):319-338. XIE Dongxuan,ZHUANG Weimin,WANG Nan,et al. Review of research on hot stamping process and equipment of high-strength steel plate[J]. Journal of Mechanical Engineering,2022,58(20):319-338. [148] 张宜生,王子健,王梁. 高强钢热冲压成形工艺及装备进展[J]. 塑性工程学报,2018,25(5):11-23. ZHANG Yisheng,WANG Zijian,WANG Liang. Progress of hot stamping forming process and equipment of high-strength steel[J]. Chinese Journal of Plastic Engineering,2018,25(5):11-23. [149] 宋燕利,华林,路珏,等. 超高强钢汽车构件热冲压成形技术与装备[J]. 锻造与冲压,2018(22):16-21. SONG Yanli,HUA Lin,LU Jue,et al. Ultra-high strength steel automotive components hot stamping forming technology and equipment[J]. Forging and Stamping,2018(22):16-21. [150] VOLLMER R,PALM C. Process monitoring and real time algorithmic for hot stamping lines[J]. Procedia Manufacturing,2019,29:256-263. [151] WRÓBEL I,DANIELCZYK P. Control system for automated technological process of hot stamping—A case study[J]. Materials,2023,16(10):3658. [152] YANG X,LIU H,DHAWAN S,et al. Digitally-enhanced lubricant evaluation scheme for hot stamping applications[J]. Nature Communications,2022,13(1):5748. |
[1] | 黄浩, 单忠德, 张丽娇, 孙正, 郭子桐, 刘检华, 金鹏. 异形截面复合材料构件成形及力学性能预测方法研究[J]. 机械工程学报, 2024, 60(2): 107-118. |
[2] | 万炜强, 韩光超, 王新云, 吕佩, 刘富初, 胡济涛, 柏伟, 徐林红. 超声辅助微塑性成形工艺研究进展[J]. 机械工程学报, 2024, 60(18): 89-115. |
[3] | 纪小刚, 方创, 王炜. 目标参数驱动的点阵支架逆向设计方法研究[J]. 机械工程学报, 2023, 59(23): 221-228. |
[4] | 林忠钦, 马运五, 夏裕俊, 李永丰, 李淑慧, 李永兵. 载运工具高性能薄壁承载结构成形及连接工艺研究进展[J]. 机械工程学报, 2023, 59(20): 1-17. |
[5] | 解东旋, 庄蔚敏, 王楠, 施宏达, 王鹏跃, 刘洋, 陈延红. 高强度钢板热冲压工艺与装备研究综述[J]. 机械工程学报, 2022, 58(20): 319-338. |
[6] | 陈源, 李淑慧, 李永丰, 林忠钦. TA15钛合金应力松弛行为宏微耦合本构建模[J]. 机械工程学报, 2022, 58(12): 64-74. |
[7] | 安剑, 李永丰, 张云光, 李淑慧. 热冲压条件下2219铝合金的本构行为测试与建模[J]. 机械工程学报, 2021, 57(4): 44-52. |
[8] | 贺斌, 胡平, 盈亮. 热冲压过程传热耦合研究*[J]. 机械工程学报, 2016, 52(22): 31-37. |
[9] | 贺斌, 李显达, 胡平, 司阳磊, 盈亮, 张向奎. 基于数值模拟和3D打印的热冲压模具随形水道设计制造研究*[J]. 机械工程学报, 2016, 52(19): 180-188. |
[10] | 刘文权, 盈亮, 王丹彤, 鲁可心, 胡平. 热冲压成形过程细观损伤演化机理研究*[J]. 机械工程学报, 2016, 52(14): 31-39. |
[11] | 刘媛媛, 梁刚, 李瑜, 张亚男, 李帅, 胡庆夕. 含微通道网络的再生支架3D打印成形工艺和系统及试验研究[J]. 机械工程学报, 2015, 51(21): 137-147. |
[12] | 李辉平;贺连芳;赵国群. 硼钢B1500HS界面传热系数与压力关系的研究[J]. , 2013, 49(16): 77-83. |
[13] | 蒋成钢;陈章华;臧勇. 镁合金板材温热冲压过程的各向异性损伤与失效分析[J]. , 2013, 49(16): 62-69. |
[14] | 李辉平;赵国群;贺连芳;张磊. 热冲压硼钢B1500HS高温本构方程的研究[J]. , 2012, 48(8): 21-27. |
[15] | 钟群鹏;有移亮;张峥;吴素君;骆红云. 机械装备构件轻量化主要技术途径的探讨[J]. , 2012, 48(18): 2-6. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||