[1] SZPALSKI C,WETTERAU M,BARR J,et al. Bone tissue engineering:Current strategies and techniques—part I:Scaffolds[J]. Tissue Engineering Part B:Reviews,2012,18(4):246-257.
[2] 国家自然基金委员会工程与材料科学部. 机械工程学科发展战略报告(2011-2020)[M]. 北京:科学出版社,2010. Department of Engineering and Materials Science of NSFC. The development strategies report of mechanical engineering discipline (2011-2020)[M]. Beijing:Science Press,2010.
[3] 罗耀超,白俊清,李琪佳. 组织工程骨血管化的研究进展[J]. 中国煤炭工业医学杂志,2009,12(3):501-503. LUO Yaochao,BAI Junqing,LI Qijia. Tissue engineering bone vascularization progress[J]. Chinese Journal of Coal Industry Medicine,2009,12(3):501-503.
[4] SANTOS M I,REIS R L. Vascularization in bone tissue engineering:Physiology,current strategies,major hurdles and future challenges[J]. Macromolecular Bioscience,2010,10(1):12-27.
[5] NGUYEN L H,ANNABI N,NIKKHAH M,et al. Vascularized bone tissue engineering:Approaches for potential improvement [J]. Tissue Engineering Part B:Reviews,2012,18(5):363-382.
[6] PEDERSON W C,PERSON D W. Long bone reconstruction with vascularized bone grafts[J]. Orthopedic Clinics of North America,2007,38(1):23-35.
[7] BAYES-GENIS A,CONOVER C A,SCHWARTZ R S. The insulin-like growth factor axis a review of atherosclerosis and restenosis[J]. Circulation Research,2000,86(2):125-130.
[8] WANG Xiaohong,YAN Yongnian,ZHANG Renji. Rapid prototyping as a tool for manufacturing bioartificial livers[J]. Trends in Biotechnology,2007,25(11):505-513.
[9] WANG Xiaohong,YAN Yongnian,ZHANG Renji. Recent trends and challenges in complex organ manufacturing[J]. Tissue Engineering Part B:Reviews,2009,16(2):189-197.
[10] WANG Xiaohong. Intelligent freeform manufacturing of complex organs[J]. Artificial Organs,2012,36(11):951-961.
[11] XU Yufan,WANG Xiaohong. Application of 3D biomimetic models in drug delivery and regenerative medicine[J]. Current Pharmaceutical Design,2015,21:1618-1626(9).
[12] WANG Xiaohong. Spatial effects of stem cell engagement in 3D printing constructs[J]. J. Stem. Cells Res. Rev. & Rep.,2014,1:5-9.
[13] MURPHY S V,ATALA A. 3D bioprinting of tissues and organs[J]. Nature Biotechnology,2014,32(8):773-785.
[14] LIU Libiao,ZHOU Xinwei,XU Yufan,et al. Controlled release of growth factors for regenerative medicine[J]. Current Pharmaceutical Design,2015,21(12):1627-1632.
[15] LI Juan,HE Ling,ZHOU Chen,et al. 3D printing for regenerative medicine:From bench to bedside[J]. MRS Bulletin,2015,40(02):145-154.
[16] ZHANG Wenjie,WRAY L S,RNJAK-KOVACINA J,et al. Vascularization of hollow channel-modified porous silk scaffolds with endothelial cells for tissue regeneration[J]. Biomaterials,2015,56:68-77.
[17] LIM Y C,BOUKANY P E,FARSON D F,et al. Direct-write femtosecond laser ablation and DNA combing and imprinting for fabrication of a micro/nanofluidic device on an ethylene glycol dimethacrylate polymer[J]. Journal of Micromechanics and Microengineering,2011,21(1):015012.
[18] HUANG Zhouchun,LI Xiang,MARTINS-GREEN M,et al. Microfabrication of cylindrical microfluidic channel networks for microvascular research[J]. Biomedical Microdevices,2012,14(5):873-883.
[19] QIN Xiaohua,TORGERSEN J,SAF R,et al. Three‐dimensional microfabrication of protein hydrogels via two‐photon‐excited thiol‐vinyl ester photopolymerization[J]. Journal of Polymer Science Part A:Polymer Chemistry,2013,51(22):4799-4810.
[20] PAPENBURG B J,LIU Jun,HIGUERA G A,et al. Development and analysis of multi-layer scaffolds for tissue engineering[J]. Biomaterials,2009,30(31):6228-6239.
[21] HE Jiankang,WANG Ye,LIU Yaxiong,et al. Layer-by-layer micromolding of natural biopolymer scaffolds with intrinsic microfluidic networks[J]. Biofabrication,2013,5(2):025002.
[22] XU Wei,WANG Xiaohong,YAN Yongnian,et al. Rapid prototyping of polyurethane for the creation of vascular systems[J]. Journal of Bioactive and Compatible Polymers,2008,23(2):103-114.
[23] LI Shengjie,XIONG Zhuo,WANG Xiaohong,et al. Direct fabrication of a hybrid cell/hydrogel construct by a double-nozzle assembling technology[J]. Journal of Bioactive and Compatible Polymers,2009,24(3):249-265.
[24] LEE K H,SHIN S J,PARK Y,et al. Synthesis of cell‐laden alginate hollow fibers using microfluidic chips and microvascularized tissue-engineering applications[J]. Small,2009,5(11):1264-1268.
[25] HU M,KURISAWA M,DENG R,et al. Cell immobilization in gelatin–hydroxyphenylpropionic acid hydrogel fibers[J]. Biomaterials,2009,30(21):3523-3531.
[26] ZHANG Yahui,YU Yin,CHEN H,et al. Characterization of printable cellular micro-fluidic channels for tissue engineering[J]. Biofabrication,2013,5(2):025004.
[27] 王小红,刘利彪. 一种医用生物组织结构及其制备方法和专用设备:中国,ZL103892937[P]. 2014-07-02. WANG Xiaohong,LIU Libiao. A medical and biological tissue structure and the preparation methods and special equipment:CN,ZL103892937[P]. 2014-07-02.
[28] 李瑜,刘媛媛,李帅,等. 交联直写海藻酸盐水凝胶中空纤维的凝胶率与溶胀度[J]. 化工学报,2014,65(12):5090-5096. LI Yu,LIU Yuanyuan,LI Shuai,et al. Gel fraction and swelling degree of hollow alginate fiber fabricated by directwriting and crosslinking[J]. CIESC Journal,2014,65(12):5090-5096.
[29] LI Shuai,LIU Yuanyuan,LI Yu,et al. Computational and experimental investigations of the mechanisms used by coaxial fluids to fabricate hollow hydrogel fibers[J]. Chemical Engineering and Processing:Process Intensification,2015,95:98-104.
[30] GOMBOTZ W R,WEE S F. Protein release from alginate matrices[J]. Advanced Drug Delivery Reviews,2012,64:194-205.
[31] 刘媛媛,张付华,陈伟华,等. 面向3D 打印复合工艺的生物CAD/CAM 系统及试验研究[J]. 机械工程学报,2014,50(15):147-154. LIU Yuanyuan,ZHANG Fuhuan,CHEN Weihua,et al. The CAD/CAM system and experimental study of biological 3D printing composite process [J]. Journal of Mechanical Engineering,2014,50(15):147-154.
[32] UTADA A S,LORENCEAU E,LINK D R,et al. Monodisperse double emulsions generated from a microcapillary device[J]. Science,2005,308(5721):537-541.
[33] UTADA A S,FERNADEZ-NIEVES A,STONE H A,et al. Dripping to jetting transitions in coflowing liquid streams[J]. Physical Review Letters,2007,99(9):094502.
[34] ZHOU Chunfeng,YUE P,FENG J J. Formation of simple and compound drops in microfluidic devices[J]. Physics of Fluids (1994-present),2006,18(9):092105.
[35] 兰文杰,李少伟,徐建鸿. 同轴环管微流控设备内液-液两相黏性流体的流动规律[J]. 化工学报,2013,64(2):476-483. LAN Wenjie,LI Shaowei,XU Jianhong,et al. Liquid-liquid two-phase viscous flow in coaxial microfluidic device[J]. CIESC Journal,2013,64(2):476-483.
[36] 黄贞益,陈光. 钛管无模拉伸数学模型研究[J]. 稀有金属材料与工程,2006,34(11):1754-1757. HUANG Zhenyi,CHEN Guang. Research on mathematical model of titanium tube dieless drawing[J]. Rare Metal Materials and Engineering,2006,34(11):1754-1757.
[37] 王忠堂. 管材无模拉伸速度场及壁厚变化研究[J]. 塑性工程学报,1995,2(2):3-8. WANG Zhongtang. Research on the velocity field and wall thickness changes of tube during dieless drawing[J]. Journal of Plasyicity Engineering,1995,2(2):3-8.
[38] 王忠堂,曹立. 管材无模拉伸壁厚变化规律实验研究[J]. 东北大学学报,1996,17(2):182-186. WANG Zhongtang,CAO Li. Experimental research on tube wall thickness changes during dieless drawing[J]. Journal of Northeastern University,1996,17(2):182-186.
[39] 陈伟华,刘媛媛,张付华,等. 基于增量制造的再生骨支架制备路径规划方法[J]. 机械工程学报,2013,49(23):12-20. CHEN Weihua,LIU Yuanyuan,ZHANG Fuhua,et al. The method of path planning for the regenerated bone-scaffold preparation based on additive manufacturing [J]. Journal of Mechanical Engineering,2013,49(23):12-20. |