[1] NING Z,ZHANG K,WANG X,et al. Joint computing and caching in 5G-envisioned Internet of vehicles:A deep reinforcement learning-based traffic control system[J]. IEEE Transactions on Intelligent Transportation Systems,2020.1-12. [2] BAGLOEE S A,TAVANA M,ASADI M,et al. Autonomous vehicles:challenges,opportunities,and future implications for transportation policies[J]. Journal of Modern Transportation,2016,24(4):284-303. [3] RASHEED I,HU F,ZHANG L. Deep reinforcement learning approach for autonomous vehicle systems for maintaining security and safety using LSTM-GAN[J]. Vehicular Communications,2020,26:100266. [4] DETHE S N,SHEVATKAR V S,BIJWE R P. Google driverless car[J]. International Journal of Scientific Research in Science,Engineering and Technology,2011,2(2):133-137. [5] FERDOWSI A,CHALLITA U,SAAD W,et al. Robust deep reinforcement learning for security and safety in autonomous vehicle systems[C]//21st International Conference on Intelligent Transportation Systems (ITSC). IEEE,2018,2018:1-8. [6] SHI X,WONG Y D,CHAI C,et al. An automated machine learning (AutoML) method of risk prediction for decision-making of autonomous vehicles[J]. IEEE Transactions on Intelligent Transportation Systems,2020:1-10. [7] 赵治国,周良杰,朱强. 无人驾驶车辆路径跟踪控制预瞄距离自适应优化[J]. 机械工程学报,2018,54(24):166-173. ZHAO Zhiguo,ZHOU Liangjie,ZHU Qiang. Preview distance adaptive optimization for the path tracking control of unmanned vehicle[J]. Journal of Mechanical Engineering,2018,54(24):166-173. [8] LIU Q,MO Y,MO X,et al. Secure pose estimation for autonomous vehicles under cyber attacks[C]//2019 IEEE Intelligent Vehicles Symposium (IV). IEEE,2019:1583-1588. [9] WANG Y,MASOUD N,KHOJANDI A. Real-Time sensor anomaly detection and recovery in connected automated vehicle sensors[J]. IEEE Transactions on Intelligent Transportation Systems,2020:1-11. [10] CURTIS S. Hacker remotely crashes Jeep from 10 miles away[J]. The Telegraph,2015. [11] SOLON O. Team of hackers take remote control of Tesla Model S from 12 miles away[J]. The Guardian,2016. [12] FRANCO V,WANG Y,KHOJANDI A,et al. Real-time sensor anomaly detection and identification in automated vehicles[J]. IEEE Transactions on Intelligent Transportation Systems,2019,21(3):1264-1276. [13] MO Y,SINOPOLI B. On the performance degradation of cyber-physical systems under stealthy integrity attacks[J]. IEEE Transactions on Automatic Control. 2016,61(9):2618-2624. [14] LI Y,ZHU L. A Bayesian game based defense scheme for CBTC systems under man-in-the-middle attacks[C]//2019 IEEE Intelligent Transportation Systems Conference,IEEE,2019:2172-2176. [15] ULLAH F,NAEEM H,JABBAR S,et al. Cyber security threats detection in internet of things using deep learning approach[J]. IEEE Access. 2019,7(99):124379-124389. [16] GONG W,CHEN H,ZHANG Z,et al. A data-driven-based fault diagnosis approach for electrical power DC-DC inverter by using modified convolutional neural network with global average pooling and 2-D feature image[J]. IEEE Access,2020,8:73677-73697. [17] LECUN Y,BOSER B,DENKER J S,et al. Backpropagation applied to handwritten zip code recognition[J]. Neural Computation,1989,1(4):541-551. [18] GOODFELLOW I,BENGIO Y,COURVILLE A. Deep learning[M]. The MIT Press,2016. [19] 宫文峰,陈辉,张美玲,等. 基于深度学习的电机轴承微小故障智能诊断方法[J]. 仪器仪表学报,2020,41(01):195-205. GONG Wenfeng,CHEN Hui,ZHANG Meiling,et al. Intelligent diagnosis method for incipient fault of motor bearing based on deep learning[J]. Chinese Journal of Scientific Instrument,2020,41(01):195-205. [20] XIA M,LI T,XU L,et al. Fault diagnosis for rotating machinery using multiple sensors and convolutional neural networks[J]. IEEE/ASME Transactions on Mechatronics,2018,23(1):101-110. [21] 姜洪权,贺帅,高建民,等. 一种改进卷积神经网络模型的焊缝缺陷识别方法[J]. 机械工程学报,2020,56(8):235-242. JIANG Hongquan,HE Shuai,GAO Jianmin,et al. An improved convolutional neural network for weld defect recognition[J]. Journal of Mechanical Engineering,2020,56(8):235-242. [22] LIN M,CHEN Q,YAN S C. Network in network[C]//International Conference on Learning Representations,2014:1-10. [23] 曲建岭,余路,袁涛,等. 基于一维卷积神经网络的滚动轴承自适应故障诊断算法[J]. 仪器仪表学报,2018,39(7):134-143. QU Jianling,YU Lu,YUAN Tao,et al. Adaptive fault diagnosis algorithm for rolling bearings based on one-dimensional convolutional neural network[J]. Chinese Journal of Scientific Instrument,2018,39(7):134-143. [24] 宫文峰,陈辉,WANG Danwei,等. 基于改进CNN-GAP-SVM的船舶电力变换器快速故障诊断方法[J/OL]. 计算机集成制造系统,2020:1-18. GONG Wenfeng,Chen Hui,Danwei WANG,et al. Fast fault diagnosis method of marine electrical converter based on improved CNN-GAP-SVM algorithm[J]. Computer Integrated Manufacturing Systems,2020:1-18. [25] WEN L,LI X,GAO L,et al. A new convolutional ceural cetwork-based data-driven fault diagnosis method[J]. IEEE Transactions on Industrial Electronics,2018,65(7):5990-5998. [26] SHAO H,JIANG H,ZHAO H,et al. A novel deep autoencoder feature learning method for rotating machinery fault diagnosis[J]. Mechanical Systems and Signal Processing,2017,95:187-204. |