[1] MATSUDAIRA T. Hunting problem of high-speed railway vehicles with special reference to bogie design for the new Tokaido line[J]. Proceedings of the Institution of Mechanical Engineers,1965,180(6):58-66. [2] WICKENS A H. Fundamentals of rail vehicle dynamics:guidance and stability[M]. Lisse:Swets and Zeitlinger,2003. [3] KNOTHE K,STICHEL S. Rail vehicle dynamics[M]. Cham:Springer International Publishing AG,2017. [4] 曾京. 车辆系统的蛇行运动分叉及极限环的数值计算[J]. 铁道学报,1996,18(3):13-19. ZENG Jing. Numerical computations of the hunting bifurcation and limit cycles for railway vehicle system[J]. Journal of the China Railway Society,1996,18(3):13-19. [5] AHMADIAN M,YANG S. Hopf bifurcation and hunting behavior in a rail wheelset with flange contact[J]. Nonlinear Dynamics,1998,15:15-30. [6] 梁树林,朴明伟,张祥杰,等. 高速车辆横向稳定性的非线性影响因素研究[J]. 铁道学报,2009,31(5):23-30. LIANG Shulin,PIAO Mingwei,ZHANG Xiangjie,et al. Investigation of non-linear effects on high-speed vehicle lateral stability[J]. Journal of the China Railway Society,2009,31(5):23-30. [7] YAN Y,ZENG J. Hopf bifurcation analysis of railway bogie[J]. Nonlinear Dynamics,2018,92:107-117. [8] POPP K. Parametric excitation of a wheelset[J]. ZAMM-Journal of Applied Mathematics and Mechanics,1997,77(S1):17-00064. [9] ZHANG T,DAI H. Bifurcation analysis of high-speed railway wheel-set[J]. Nonlinear Dynamics,2016,83:1511-1528. [10] ZHANG T,DAI H. Loss of stability of a railway wheel-set,subcritical or supercritical[J]. Vehicle System Dynamics,2017,55(11):1731-1747. [11] 罗世辉. 轨距对机车车辆稳定性影响的研究[J]. 中国铁道科学,2010,31(2):56-60. LUO Shihui. Study on the influence of the track gauge on vehicle yaw stability[J]. China Railway Science,2010,31(2):56-60. [12] 池茂儒,张卫华,曾京,等. 轮径差对车辆系统稳定性的影响[J]. 中国铁道科学,2008,29(6):65-70. CHI Maoru,ZHANG Weihua,ZENG Jing,et al. Influence of wheel diameter difference on the stability of vehicle system[J]. China Railway Science,2008,29(6):65-70. [13] WU X,CHI M. Parameters study of hopf bifurcation in railway vehicle system[J]. Journal of Computational and Nonlinear Dynamics,2015,10:031012-1. [14] YAMANAGA Y,WATANABE N. Experimental investigation of global stability against hunting oscillation using a real bogie[J]. Transaction of the JSME,2018,84(866):1-12. [15] YAMANAGA Y,KIDO K. Influence of excitation condition on evaluating the critical hunting speed[J]. QR of RTRI,2019,60(2):97-102. [16] 孙建锋,池茂儒,吴兴文,等. 基于能量法的轮对蛇行运动稳定性[J]. 交通运输工程学报,2018,18(2):82-89. SUN Jianfeng,CHI Maoru,WU Xingwen,et al. Hunting motion stability of wheelset based on energy method[J]. Journal of Traffic and Transportation Engineering,2018,18(2):82-89. [17] SAKAI H. A theoretical consideration to negative damping of hunting of wheelset[J]. Transactions of the JSME,2017,83(854):17-00064. [18] 干锋,戴焕云,罗光兵,等. 铁道车辆柔性转向架蛇行频率分析方法[J]. 大连交通大学学报,2021,42(1):1-8. GAN Feng,DAI Huanyun,LUO Guangbing,et al. Analysis method of hunting frequency for flexible bogies of railway vehicles[J]. Journal of Dalian Jiaotong University,2021,42(1):1-8. [19] HURWITZ A. Ueber die bedingungen,unter welchen eine gleichung nur wurzeln mit negative reellen theilen besitzt[J]. Mathematische Annalen,1895,46:273-284. [20] ZENG J,LUO R. Non-linear analysis of disc brake- induced vibrations for railway vehicles[J]. Proceedings of the Institution of Mechanical Engineers,Part F:Journal of Rail and Rapid Transit,2011,225(1):48-56. [21] NEWLAND D E. On the modal analysis of non-conservative linear systems[J]. Journal of Sound and Vibration,1987,112(1):69-96. [22] MA F,IMAM A,MORZFELD M. The decoupling of damped linear systems in oscillatory free vibration[J]. Journal of Sound and Vibration,2009,324(1-2):408-428. [23] MA F,IMAM A,MORZFELD M. The decoupling of damped linear systems in free or forced vibration[J]. Journal of Sound and Vibration,2010,329(1-2):3182-3202. [24] KAWANO D T,SALSA R G Jr,MA F,et al. A canonical form of the equation of linear dynamic systems[J]. Proceedings of the Royal Society A:Mathematical,Physical and Engineering Science,2018,474:20170809. |