机械工程学报 ›› 2021, Vol. 57 ›› Issue (22): 157-171.doi: 10.3901/JME.2021.22.157
温海浪, 肖平, 陆静
收稿日期:
2020-11-04
修回日期:
2021-07-05
出版日期:
2021-11-20
发布日期:
2022-02-28
通讯作者:
陆静(通信作者),女,1981年出生,博士,教授,博士研究生导师。主要研究方向为半导体基片的超精密加工及超细磨料的表面改性。E-mail:lujing26@hqu.edu.cn
作者简介:
温海浪,男,1996年出生,硕士研究生。主要研究方向为大尺寸CVD单晶金刚石的抛光。E-mail:hlwen@stu.hqu.edu.cn;肖平,男,1992年出生,硕士研究生。主要研究方向为单晶金刚石的抛光。E-mail:pxiao@hqu.edu.cn
基金资助:
WEN Hailang, XIAO Ping, LU Jing
Received:
2020-11-04
Revised:
2021-07-05
Online:
2021-11-20
Published:
2022-02-28
摘要: 近些年来,化学气相沉积(Chemical vapor deposition,CVD)单晶金刚石在电子学领域的应用令人瞩目,这得益于CVD单晶金刚石在生长技术和半导体掺杂技术上的进展。一直以来,成熟的衬底加工技术是半导体材料得以应用的基础,其中超精密抛光作为晶圆衬底加工的最后一道工序,直接决定了晶圆表面粗糙度和亚表面损伤程度。可以预见,超精密抛光技术将会在制备大尺寸高质量金刚石衬底中发挥重要作用。对目前国内外现有的单晶金刚石抛光方法进行综述,以制备大尺寸高质量单晶金刚石衬底为目标,从加工设备、工艺参数、加工精度、加工效率和材料去除机理等方面进行分析,总结各种抛光方法的优势和缺点,展望未来大尺寸单晶金刚石衬底抛光技术的发展趋势。目前鲜有针对大尺寸单晶金刚石抛光技术的综述,本文为国内学者展开单晶金刚石抛光相关工作的研究提供综述资料。
中图分类号:
温海浪, 肖平, 陆静. 大尺寸单晶金刚石衬底抛光技术研究现状与展望[J]. 机械工程学报, 2021, 57(22): 157-171.
WEN Hailang, XIAO Ping, LU Jing. Research Status and Prospect on Polishing Technology of Large Size Single Crystal Diamond Substrate[J]. Journal of Mechanical Engineering, 2021, 57(22): 157-171.
[1] 林佳, 黄浩生. 第三代半导体带来的机遇与挑战[J]. 集成电路应用, 2017(12):85-88. LIN Jia, HUANG Haosheng. Opportunities and challenges brought by the third-generation semiconductor[J]. Integrated Circuit Application, 2017(12):85-88. [2] 陈秀芳, 杨祥龙, 徐现刚, 等. 第3代半导体材料在5G通讯领域的发展与机遇[J]. 新材料产业, 2018, 209(1):43-46. CHEN Xiufang, YANG Xianglong, XU Xiangang, et al. Development and opportunities of the 3rd generation semiconductor materials in the 5G communication field[J]. New Materials Industry, 2018, 209(1):43-46. [3] RAYNAUD C, TOURNIER D, HERVÉM, et al. Comparison of high voltage and high temperature performances of wide bandgap semiconductors for vertical power devices[J]. Diamond and Related Materials, 2010, 19(1):1-6. [4] 付方彬, 金鹏, 刘雅丽, 等. MPCVD生长半导体金刚石材料的研究现状[J]. 微纳电子技术, 2016, 53(9):571-581. FU Fangbin, JIN Peng, LIU Yali, et al. Current study of MPCVD growth semiconductor diamond materials[J]. Micro Electronics, 2016, 53(9):571-581. [5] 陈亚男, 张烨, 郁万成, 等. 金刚石半导体材料和器件的研究现状[J]. 微纳电子技术, 2017, 54(4):217-228. CHEN Yanan, ZHANG Ye, YU Wancheng, et al. Current study of diamond semiconductor materials and devices[J]. Micro Electronics, 2017, 54(4):217-228. [6] SILVA F, ACHARD J, BRINZA O, et al. High quality, large surface area, homoepitaxial MPACVD diamond growth[J]. Diamond and Related Materials, 2009, 18(5):683-697. [7] SCHRECK M, ASMUSSEN J, SHIKATA S, et al. Large-area high-quality single crystal diamond[J]. MRSBulletin, 2014, 39(6):504-510. [8] UMEZAWA H, NAGASE M, KATO Y, et al. High temperature application of diamond power device[J]. Diamond and Related Materials, 2012, 24:201-205. [9] CHICOT G, EON D, ROUGER N. Optimal drift region for diamond power devices[J]. Diamond and Related Materials, 2016, 69:68-73. [10] LI F N, ZHANG J W, WANG X L, et al. Deep-ultraviolet detectors based on oxygen-/fluorine-terminated (100)diamond[J]. Superlattices and Microstructures, 2016, 100:258-265. [11] SHIKATA, SHINICHI. Single crystal diamond wafers for high power electronics[J]. Diamond and Related Materials, 2016, 65:168-175. [12] YAMADA H, CHAYAHARA A, MOKUNO Y, et al. Uniform growth and repeatable fabrication of inch-sized wafers of a single-crystal diamond[J]. Diamond and Related Materials, 2013, 33:27-31. [13] YAMADA H, CHAYHARA A, MOKUNO Y, et al. A 2-in. mosaic wafer made of a single-crystal diamond[J]. Applied Physics Letters, 2014, 104(10):102110. [14] YAMADA H, CHAYHARA A, UMEZAWA H, et al. Fabrication and fundamental characterizations of tiled clones of single-crystal diamond with 1-inch size[J]. Diamond and Related Materials, 2012, 24:29-33. [15] SCHRECK M, GSELL S, BRESCIA R, et al. Ion bombardment induced buried lateral growth:The key mechanism for the synthesis of single crystal diamond wafers[J]. Scientific Reports, 2017, 7:44462. [16] FRIEL I, CLEWES S L, DHILLON H K, et al. Control of surface and bulk crystalline quality in single crystal diamond grown by chemical vapour deposition[J]. Diamond and Related Materials, 2009, 18(5-8):808-815. [17] 刘晓晨, 郭辉, 安晓明, 等. CVD法制备高质量金刚石单晶研究进展[J]. 人工晶体学报, 2017, 46(10):1897-1901. LIU Xiaochen, GUO Hui, AN Xiaoming, et al. Progress in the preparation of high-quality diamond single crystal by CVD method[J]. Journal of Artificial Crystallography, 2017, 46(10):1897-1901. [18] YAMADA M, TERAJI T, ITO T. Improvement in the crystalline quality of homoepitaxial diamond films by oxygen plasma etching of mirror-polished diamond substrates[J]. Journal of Crystal Growth, 2005, 285(1-2):130-136. [19] TALLAIRE A, KASU M, UEDA K, et al. Origin of growth defects in CVD diamond epitaxial films[J]. Diamond and Related Materials, 2008, 17(1):60-65. [20] HIRD J R, FIELD J E. Diamond polishing[J]. Proceedings of the Royal Society A, 2004, 460(2052):3547-3568. [21] MICHAEL M, LARS P, JONATHAN H. Taming the untamable-the art and science of diamond polishing[J]. Comprehensive Hard Materials, 2014(3):81-98. [22] ZONG W J, LI D, CHENG K, et al. The material removal mechanism in mechanical lapping of diamond cutting tools[J]. International Journal of Machine Tools and Manufacture, 2005, 45(7-8):783-788. [23] BUNDY F, HALL H, STRONG H, et al. Man-made diamonds[J]. Nature, 1995, 176(9):51-55. [24] EVRESOLE W G. Synthesis of diamond:US, US3030188[P]. 1962-04-17. [25] GLOOR S, LÜTHY W, WEBER H P, et al. UV laser polishing of thick diamond films for IR windows[J]. Applied Surface Science, 1999, 138-139(1):135-139. [26] MACLEAN A J, BIRCH R B, ROTH P W, et al. Limits on efficiency and power scaling in semiconductor disk lasers with diamond heatspreaders[J]. Journal of the Optical Society of America B, 2009, 26(12):2228-2236. [27] SCHUELKE T, GROTJOHN T A. Diamond polishing[J]. Diamond and Related Materials, 2013, 32(2):17-26. [28] MALSHE A P, PARK B S, BROWN W D, et al. A review of techniques for polishing and planarizing chemically vapor-deposited (CVD) diamond films and substrates[J]. Diamond and Related Materials, 1999, 8(7):1198-1213. [29] HANSON R, AWSCHALOM D D. Coherent manipulation of single spins in semiconductors[J]. Nature, 2008, 453(7198):1043-1049. [30] NEBEL C E, REZEK B, SHIN D, et al. Diamond for bio-sensor applications[J]. Journal of Physics D Applied Physics, 2007, 40(20):6443-6466. [31] ALMAVIVA S, MARINELLI M, MILANI E, et al. Thermal and fast neutron detection in chemical vapor deposition single-crystal diamond detectors[J]. Journal of Applied Physics, 2008, 103(5):570-575. [32] MAY P W. Diamond thin films:A 21st-century material[J]. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2000, 358(1766):473-495. [33] HITCHINER M P, WILKS E M, WILKS J. The polishing of diamond and diamond composite materials[J]. Wear, 1984, 94(1):103-120. [34] TOLKOWSKY. Research on the abrading, grinding or polishing of diamonds[J]. Rhode Island Medical Journal, 1920, 60(9):417-418, 454. [35] CHEN Y, ZHANG L. Polishing of diamond materials[M]. London:Springer, 2013. [36] COUTO M, ENEKEVORT W, WICHMAN B, et al. Scanning tunneling microscopy of polished diamond surfaces[J]. Applied Surface Science, 1992, 62(4):263-268. [37] GRILLO S E, FIELD J E. The polishing of diamond[J]. Journal of Physics D Applied Physics, 1997, 30(2):202-209. [38] GRILLO S E, FIELD J E, BOUWELEN F M. Diamond polishing:The dependency of friction and wear on load and crystal orientation[J]. Journal of Physics D Applied Physics, 2000, 33(8):985-990. [39] GOGOTSI Y G, KAILER A, NICKEL K G. Pressure-induced phase transformations in diamond[J]. Journal of Applied Physics, 1998, 84(3):1299-1304. [40] GOGOTSI Y G, KAILER A, NICKEL K G. Materials:Transformation of diamond to graphite[J]. Nature, 1999, 401(6754):663-664. [41] PASTEWKA L, MOSER S, GUMBSCH P, et al. Anisotropic mechanical amorphization drives wear in diamond.[J]. Nature Materials, 2011, 10(1):34-38. [42] ZONG W J, CHENG X, ZHANG J J. Atomistic origins of material removal rate anisotropy in mechanical polishing of diamond crystal[J]. Carbon, 2016, 99:186-194. [43] DORONIN M A, POLYAKOY S N, KRAVCHUK K S, et al. Limits of single crystal diamond surface mechanical polishing[J]. Diamond and Related Materials, 2018, 87:149-155. [44] KUBOTA A, NAGAE S, MOTOYAMA S. High-precision mechanical polishing method for diamond substrate using micron-sized diamond abrasive grains[J]. Diamond and Related Materials, 2020, 101:107644. [45] TATSUMI N, HARANO K, ITO T, et al. Polishing mechanism and surface damage analysis of type IIa single crystal diamond processed by mechanical and chemical polishing methods[J]. Diamond and Related Materials, 2016, 63:80-85. [46] WANG C Y, ZHANG F L, KUANG T C, et al. Chemical/mechanical polishing of diamond films assisted by molten mixture of Li NO3 and KNO3[J]. Thin Solid Films, 2006, 496(2):698-702. [47] CHEN C Y, TSAI H Y, Wu C H, et al. An oxidation enhanced mechanical polishing technique for CVDdiamond films[J]. Diamond and Related Materials, 2005, 14(3-7):622-625. [48] KÜHNLE J, WEIS O. Mechanochemical superpolishing of diamond using Na NO3, or KNO3, as oxidizing agents[J]. Surface Science, 1995, 340(1):16-22. [49] KUBOTA A, FUKUYAMA S, ICHIMORI Y, et al. Surface smoothing of single-crystal diamond (100)substrate by polishing technique[J]. Diamond and Related Materials, 2012, 24:59-62. [50] KUBOTA A, NAGAE S, TOUGE M. Improvement of material removal rate of single-crystal diamond by polishing using H2O2, solution[J]. Diamond and Related Materials, 2016, 70:39-45. [51] YUAN S, HUANG J, Lu M, et al. Sub-nanoscale polishing of single crystal diamond (100) and the chemical behavior of nanoparticles during the polishing process[J]. Diamond and Related Materials, 2019, 100:107528. [52] HAISMA J, FRANK J H M, SPIERINGS B, et al. Damage-free tribochemical polishing of diamond at room temperature:A finishing technology[J]. Precision Engineering, 1992, 14(1):20-27. [53] THOMAS E L H, MANDAL S, BROUSSEAU E B, et al. Silica based polishing of{100}and{111}single crystal diamond[J]. Science and Technology of Advanced Materials, 2014, 15(3):035013. [54] THOMAS E, NWLSON G W, MANDAL S, et al. Chemical mechanical polishing of thin film diamond[J]. Carbon, 2014, 68:473-479. [55] KATO Y, UMEZAWA H, SHIKATA S, et al. Effect of an ultraflat substrate on the epitaxial growth of chemical-vapor-deposited diamond[J]. Applied Physics Express, 2013, 6(2):025506. [56] WATANABE J, TOUGE M, SAKAMOTO T. Ultraviolet-irradiated precision polishing of diamond and its related materials[J]. Diamond and Related Materials, 2013, 39(10):14-19. [57] AKIHISA K, TAKAHIRO T. Novel planarization method of single-crystal diamond using 172□nm vacuumultraviolet light[J]. Precision Engineering, 2018, 54:269-275. [58] YAMAMURA K, EMORI K, SUN R, et al. Damage-free highly efficient polishing of single-crystal diamond wafer by plasma-assisted polishing[J]. CIRP Annals, 2018, 67:353-356. [59] DENG H, ENDO K, YAMAMURA K. Plasma-assisted polishing of gallium nitride to obtain a pit-free and atomically flat surface[J]. CIRP Annals Manufacturing Technology, 2015, 64(1):531-534. [60] DENG H, MONNA K, TABATA T, et al. Optimization of the plasma oxidation and abrasive polishing processes in plasma-assisted polishing for highly effective planarization of 4H-Si C[J]. CIRP Annals-Manufacturing Technology, 2014, 63(1):529-532. [61] CHEN Y, ZHANG L C, TANG F. Surface integrity of PCD composites generated by dynamic friction polishing:Effect of processing conditions[J]. Diamond and Related Materials, 2012, 26:25-31. [62] HUANG S T, ZHOU L, XU L F, et al. A super-high speed polishing technique for CVD diamond films[J]. Diamond and Related Materials, 2010, 19(10):1316-1323. [63] FENG H B, CHEN Y Q, ZHANG L C. Polishing of CVDdiamond wafers and films[J]. Key Engineering Materials, 2013, 531-532:373-376. [64] YUAN Z, JIN Z, KANG R, et al. Tribochemical polishing CVD diamond film with Fe Ni Cr alloy polishing plate prepared by MA-HPS technique[J]. Diamond and Related Materials, 2012, 21:50-57. [65] 郭晓光, 刘涛, 翟昌恒, 等. 过渡金属作用下的金刚石石墨化机理研究[J]. 机械工程学报, 2016, 52(20):23-29. GUO Xiaoguang, LIU Tao, ZHAI Changheng, et al. Mechanism of diamond graphitization under transition metals[J]. Journal of Mechanical Engineering, 2016, 52(20):23-29. [66] SUZUKI K, IWAI M, UEMATSU T, et al. Material removal mechanism in dynamic friction polishing of diamond[J]. Key Engineering Materials, 2003, 238-239:235-240. [67] CHEN Y Q, ZHANG L C. Fast polishing of single crystal diamond[J]. Advanced Materials Research, 2010, 97-101:4096-4099. [68] CUI Z, LI G, ZONG W. A polishing method for single crystal diamond (100) plane based on nano silica and nano nickel powder[J]. Diamond and Related Materials, 2019, 95:141-153. [69] ZHENG Y T, YE H, THORNTON R, et al. Subsurface cleavage of diamond after high-speed three-dimensional dynamic friction polishing[J]. Diamond and Related Materials, 2020, 101:107600. [70] NAGASE T, KATO H, PAHLOVY S A, et al. Nanosmoothing of single crystal diamond chips by 1 ke VAr[sup+]ion bombardment[J]. Journal of Vacuum Science and Technology, 2010, 28(2):263. [71] WEI Q, LI K D, LIAN J, et al. Angular dependence of sputtering yield of amorphous and polycrystalline materials[J]. Journal of Physics D Applied Physics, 2008, 41(17):2329-2342. [72] MI S, TOROS A, GRAZIOSI T, et al. Non-contact polishing of single crystal diamond by ion beam etching[J]. Diamond and Related Materials, 2019, 92:248-252. [73] LI Y, LU J, XU X P. Phase transformation of monocrystalline silicon induced by polishing with diamond abrasives[J]. IEEE Transactions on Semiconductor Manufacturing, 2015, 28:153-159. [74] LUO Q F, LU J, XU X P. Study on the processing characteristics of Si C and sapphire substrates polished by semi-fixed and fixed abrasive tools[J]. Tribology International, 2016, 104:191-203. [75] LU J, LUO Q F, XU X P, et al. Removal mechanism of4H-and 6H-Si C substrates (0001 and 0001-) in mechanical planarization machining[J]. Proceedings of the Institution of Mechanical Engineers, 2019, 233(1):69-76. [76] LU J, XIAO P, TONG R L, et al. Precision polishing of single crystal diamond (111) substrates using a sol-gel (sg)polishing pad[J]. IEEE Transactions on Semiconductor Manufacturing, 2019, 32(3):341-345. [77] LIN Y, LU J, TONG R, et al. Surface damage of single-crystal diamond (100) processed based on a sol-gel polishing tool[J]. Diamond and Related Materials, 2018, 83:46-53. [78] 肖平. CVD单晶金刚石凝胶抛光工具的制备及应用[D]. 厦门:华侨大学, 2020. XIAO Ping. Preparation and application of gel polishing tool for CVD single crystal diamond[D]. Xiamen:Huaqiao University, 2020. [79] OZKAN A M, MALSHE A P, BROWN W D. Sequential multiple-laser-assisted polishing of free-standing CVDdiamond substrates[J]. Diamond and Related Materials, 1997, 6(12):1789-1798. [80] PRIESKE M, VOLLERTSEN F. Picosecond-laser polishing of CVD-diamond coatings without graphite formation[J]. Materials Today:Proceedings, 2021, 40:1-4. [81] ZHENG X, MA Z, ZHANG L, et al. Investigation on the etching of thick diamond film and etching as a pretreatment for mechanical polishing[J]. Diamond and Related Materials, 2007, 16(8):1500-1509. [82] 王成勇, 郭钟宁, 陈君. 旋转电极电火花抛光金刚石膜[J]. 机械工程学报, 2002(38):168-171. WANG Chengyong, GUO Zhongning, CHEN Jun. Electrospark polished diamond film[J]. Journal of Mechanical Engineering, 2002(38):168-171. [83] CHU X Q, ZUO D W. Polishing of B doped diamond films by electrical discharge machining[J]. Chinese Journal of Vacuum Science and Technology, 2011, 31(3):287-291. [84] DUBEY A K, YADAVA V. Laser beam machining-Areview[J]. International Journal of Machine Tools and Manufacture, 2008, 48(6):609-628. [85] SATO Y, KAWAMURA J, NAGASE T, et al. Sharpening of CVD diamond coated tools by 0. 5-10 ke V Ar+ion beam[J]. Diamond and Related Materials, 2011, 20(7):954-959. [86] MAHMUD S F, FUKABORI T, PAHLOVY S A, et al. Low energy ion beam smoothening of artificially synthesized single crystal diamond chips with initial surface roughness of 0. 08-0. 4 nm RMS[J]. Diamond and Related Materials, 2012, 24(2):116-120. |
[1] | 董志刚, 王中旺, 冉乙川, 鲍岩, 康仁科. 碳纤维增强陶瓷基复合材料超声振动辅助铣削加工技术的研究进展[J]. 机械工程学报, 2024, 60(9): 26-56. |
[2] | 陈守峰, 王成勇, 李伟秋, 丁峰, 卢耀安, 周玉海. 超声振动铣削加工石墨材料去除机理与加工表面质量评价[J]. 机械工程学报, 2024, 60(9): 86-96. |
[3] | 李晗, 章程, 陈杰, 安庆龙, 陈明. SiCf/SiC复合材料激光烧蚀辅助铣削材料去除机理与加工表面质量评价[J]. 机械工程学报, 2024, 60(9): 206-217. |
[4] | 刘鑫, 张俊, 徐斌斌, 刘弘光, 赵万华. 激光辅助铣削过程的预热温度场调控方法研究[J]. 机械工程学报, 2024, 60(9): 218-228. |
[5] | 董晓星, 诸铁宇, 鲁聪达, 金明生. 基于球柱状电流变工具的工件表面形貌演化机理研究[J]. 机械工程学报, 2024, 60(9): 364-373. |
[6] | 朱少禹, 张向军, 孙军, 王大刚. 粗糙表面轴承微极流体润滑的平均流量模型[J]. 机械工程学报, 2024, 60(7): 203-211. |
[7] | 华东鹏, 周青, 王婉, 李硕, 王志军, 王海丰. 碳化硅纳米抛光亚表面损伤机理的分子动力学模拟[J]. 机械工程学报, 2024, 60(5): 231-240. |
[8] | 李子清, 崔长彩, 卞素标, 李慧慧, 陆静, ORIOL Arteaga, 徐西鹏. 单晶金刚石衬底超精密加工损伤层无损测量与表征[J]. 机械工程学报, 2024, 60(4): 239-249. |
[9] | 何春雷, 王姝淇, 李东洋, 耿昆, 陈光, 任成祖. 晶粒对多晶材料超精密切削影响的研究进展[J]. 机械工程学报, 2024, 60(3): 373-392. |
[10] | 王相宇, 仇文豪, 牛金涛, 刘国梁, 付秀丽, 郭培全, 乔阳. 钛铝合金低温切削加工温度的实验和仿真研究[J]. 机械工程学报, 2024, 60(19): 318-331. |
[11] | 温雪龙, 赵正豪, 巩亚东, 李俊鹏. FeCoNiCrAlx高熵合金铣削表面质量影响因素实验研究[J]. 机械工程学报, 2024, 60(17): 367-378. |
[12] | 郭江, 张鹏飞, 杨哲, 赵勇, 李琳光, 景召, 张蒙, 庞桂兵. 匀光阵列微结构模具高性能非接触仿形抛光[J]. 机械工程学报, 2024, 60(1): 127-136. |
[13] | 张园, 徐念伟, 鲍岩, 董志刚, 韩松, 郭东明, 康仁科. 轴向超声辅助端面磨削金属表面形貌及粗糙度预测[J]. 机械工程学报, 2023, 59(5): 307-316. |
[14] | 何春雷, 张建国, 王姝淇, 任成祖. 基于多波长散射光特性的铝合金超精密车削表面粗糙度测量方法研究[J]. 机械工程学报, 2023, 59(3): 308-317. |
[15] | 张瑜, 康仁科, 高尚, 黄金星, 朱祥龙. 湿式机械化学磨削单晶硅的软磨料砂轮及其磨削性能[J]. 机械工程学报, 2023, 59(3): 328-336. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||