[1] VASUNDHARA S, RASHUL K, BHARATH B, et al. Effect of non-metallic inclusions(NMI) on crack formation in forged steel[J]. Materials Today:Proceedings, 2020, 41:1096-1102. [2] 马庆贤, 曹起骧, 谢冰, 等. 大型饼类锻件变形规律及夹杂性裂纹产生过程研究[J]. 塑性工程学报, 1994, 1(3):42-46. MA Qingxian, CAO Qixiang, XIE Bing, et al. Study on deformation principle and occurring process of originated from inclusions in heavy disc forgings[J]. Journal of Plasticity Engineering, 1994, 1(3):42-46. [3] ZERBST U, MADIA M C, KLINGER C, et al. Defects as a root cause of fatigue failure of metallic components. II:Non-metallic inclusions[J]. Engineering Failure Analysis, 2019, 98:228-239. [4] 陈明, 刘钢, 张晓辉, 等. 新型低碳硫系易切削钢切削性能试验[J]. 机械工程学报, 2007, 43(9):161-166. CHEN Ming, LIU Gang, ZHANG Xiaohui, et al. Experiment on machinability of new developed low carbon suiphur free-cutting steel[J]. Journal of Mechanical Engineering, 2007, 43(9):161-166. [5] CHOI N, LIM K R, NA Y S, et al. Characterization of non-metallic inclusions and their influence on the mechanical properties of a FCC single-phase high-entropy alloy[J]. Journal of Alloys and Compounds, 2018, 763:546-557. [6] KREWERTH D, LIPPMANN T, WEIDNER A, et al. Influence of non-metallic inclusions on fatigue life in the very high cycle fatigue regime[J]. International Journal of Fatigue, 2016, 84:40-52. [7] 张海, 刘德富. 管板大锻件的失效分析[J]. 机械工程学报, 2002, 38(1):138-141. ZHANG Hai, LIU Defu. Scrap analysis about large forging of pipe plate[J]. Journal of Mechanical Engineering, 2002, 38(1):138-141. [8] 庞钧. 大型铸锻件缺陷分析图谱[M]. 北京:机械工业出版社, 1990. PANG Jun. Defect analysis chart of large castings and forgings[M]. Beijing:China Machine Press, 1990. [9] 王立双. 联合转子心部无损检测缺陷解剖分析研究[J]. 大型铸锻件, 2021(1):49-52. WANG Lishuang. Anatomical analysis of defect in nondestructive test of combined rotot center[J]. Heavy Casting and Forging, 2021(1):49-52. [10] COSTA S V. Non-metallic inclusions in steels-origin and control[J]. Journal of Materials Research and Technology, 2018, 7(3):283-299. [11] 姜锡山. 钢中非金属夹杂物[M]. 北京:冶金工业出版社, 2011. JIANG Xishan. Nonferrous inclusions in steels[M]. Beijing:Chinese Metallurgical Industry Press, 2011. [12] 张立峰. 钢中非金属夹杂物[M]. 北京:冶金工业出版社, 2019. ZHANG Lifeng. Non-metallic inclusions in steels[M]. Beijing:Chinese Metallurgical Industry Press, 2019. [13] KAUSHIK P, LEHMANN J, NADIF M. State of the art in control of inclusions, their characterization, and future requirements[J]. Metallurgical and Materials Transactions B, 2012, 43(4):710-725. [14] 周淑窈. 镦粗工艺中夹杂物形貌变化规律研究[D]. 秦皇岛:燕山大学, 2010. ZHOU Shuyao. Study on morphlogy of deformation of inclusions in upsetting process[D]. Qinhuangdao:Yanshan University, 2010. [15] 冯磊, 轩福贞. 非金属夹杂物对材料内局部应力集中的影响[J]. 机械工程学报, 2013, 49(8):41-48. FENG Lei, XUAN Fuzhen. Effect of non-metallic inclusions on the local stress concentration within materials[J]. Journal of Mechanical Engineering, 2013, 49(8):41-48. [16] ULRICH T R, WOLFGANG B, JOHN E, et al. Finite element modelling of the effect of non-metallic inclusions in metal forming processes[J]. Computational Materials Science, 1999, 16(1):32-38. [17] 任运来, 牛龙江, 陈志英, 等. 锻件内部脆性夹杂物边界裂纹锻合的应力条件[J]. 机械工程学报, 2014, 50(22):84-89. REN Yunlai, NIU Longjiang, CHEN Zhiying, et al. Stress condition for healing the crack between the inclusion and the matrix metal in heavy forgings[J]. Journal of Mechanical Engineering, 2014, 50(22):84-89. [18] YANG W, PENG K Y, ZHANG L F, et al. Deformation and fracture of non-metallic inclusions in steel at different temperatures[J]. Journal of Materials Research and Technology, 2020, 9(6):15016-15022. [19] 周晓明, 汪殿龙, 汪煜, 等. 非金属夹杂物在镍基粉末高温合金中的变形行为[J]. 失效分析与预防, 2008, 3(3):23-27. ZHOU Xiaoming, WANG Dianlong, WANG Yu, et al. Deformation behavior of non-metallic inclusions in nickel-base P/M superalloy[J]. Failure Analysis and Prevention, 2008, 3(3):23-27. [20] YU H L, LIU X H, BI H Y, et al. Deformation behavior of inclusions in stainless steel strips during multi-pass cold rolling[J]. Journal of Materials Research and Technology, 2009, 209(1):455-461. [21] NOZOMI M, MOTOKI T, TAKAHIRO I, et al. Computer simulation of deformation behavior of non-metallic inclusion in hot-rolling[J]. Procedia Engineering, 2014, 81:120-125. [22] 金淼, 杨帅, 陈雷, 等. 氧化铝夹杂高温变形过程中的破碎机理[J]. 硅酸盐学报, 2020, 48(6):833-840. JIN Miao, YANG Shuai, CHEN Lei, et al. Crushing mechanism of alumina inclusions in high-temperature deformation[J]. Journal of the Chinese Ceramic Society, 2020, 48(6):833-840. [23] YANG S, LU Y, GUO Y G, et al. Crushing behavior of alumina inclusions with different porosity during hot compression[J]. Ceramics International, 2021, 47(5):6562-6572. [24] 宋建丽, 邓琦林, 陈畅源, 等. 基于激光熔覆的金属零件快速成形组织与性能[J]. 金属热处理, 2005, 30(8):48-51. SONG Jianli, DENG Qilin, CHEN Changyuan, et al. Microstructure and properties of metal components by laser cladding rapid forming[J]. Heat Treatment of Metals, 2005, 30(8):48-51. [25] ANDRE L V. Non-metallic inclusions in steels-origin and control[J]. Journal of Materials Research and Technology, 2018, 7(3):283-299. [26] BRAUN T B, ELLIOTT J F, FLEMINGS M C. The clustering of alumina inclusions[J]. Metallurgical Transactions B, 1979, 10(2):171-184. [27] RAVICHANDRAN G, SUBHASH G. A micromechanical model for high strain rate behavior of ceramics[J]. International Journal of Solids and Structures, 1995, 32(17-18):2627-2646. [28] ACHARYA S, BYSAKH S, PARAMESWARAN V, et al. Deformation and failure of alumina under high strain rate compressive loading[J]. Ceramics International, 2015, 41(5):6793-6801. |