• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2021, Vol. 57 ›› Issue (20): 38-46.doi: 10.3901/JME.2021.20.038

• 仪器科学与技术 • 上一篇    下一篇

扫码分享

多传感器信息融合的铁路扣件缺陷检测方法

金鹏1, 黄浩1, 刘检华1, 刘少丽1, 方玥2, 何森1, 戚慧志1, 刘威1   

  1. 1. 北京理工大学机械与车辆学院 北京 100081;
    2. 中国铁道科学研究院集团有限公司基础设施检测研究所 北京 100081
  • 收稿日期:2020-12-15 修回日期:2021-05-16 出版日期:2021-10-20 发布日期:2021-12-15
  • 通讯作者: 刘少丽(通信作者),女,1984年出生,博士,副教授,博士研究生导师。主要研究方向为数字化检测与机器视觉。E-mail:liushaoli@bit.edu.cn
  • 作者简介:金鹏,男,1987年出生,博士后。主要研究方向为物体三维重建技术。E-mail:kingpeng604@163.com;方玥,女,1984年出生,博士,副研究员。主要研究方向为轨道检测与机器视觉。E-mail:fangyue@rails.cn
  • 基金资助:
    国家自然科学基金(51875044)和国家基础科研(JCKY2017204B502)资助项目。

Fault Detection Method of Railway Fastener Combined with Multi-sensor Information

JIN Peng1, HUANG Hao1, LIU Jianhua1, LIU Shaoli1, FANG Yue2, HE Sen1, QI Huizhi1, LIU Wei1   

  1. 1. School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081;
    2. Infrastructure Inspection Research Institute, China Academy of Railway Sciences Corporation Limited, Beijing 100081
  • Received:2020-12-15 Revised:2021-05-16 Online:2021-10-20 Published:2021-12-15

摘要: 基于机器视觉的二维图像铁路扣件缺陷检测已经取代人工检测,提高了检测效率。但是,铁路扣件缺陷样本数量少且标注困难,以及检测结果受光照条件影响大等问题仍然是当前所面对的主要挑战。因此,提出一种多传感器信息融合的铁路扣件缺陷检测方法,采用结构光设备快速高效地采集铁路扣件的深度和强度信息,设计一种针对深度图的自适应定位分割方法,自动准确定位和分割深度图中的铁路扣件,并将定位分割参数与强度图融合,实现铁路扣件的定位分割;针对样本不均衡和样本标注效率低的问题,通过DCGAN扩充缺陷扣件样本的数量;设计了具有8个残差块共18层的ResNet神经网络,完成铁路扣件螺母缺失、弹条断裂和弹条缺失三种缺陷类别检测,并采集WJ-7类型铁路扣件样本设计了相关试验,验证结果表明,缺陷扣件检测平均准确率达到97.6%,满足工程应用的需求。

关键词: 铁路扣件, 缺陷检测, 样本不平衡, 深度学习

Abstract: The defect detection of railway fastener based on machine vision has replaced manual detection and improved the detection efficiency. However, the problems including few samples of defective railway fastener, the difficulty of sample labeling and the great influence of light conditions on 2D image detection are still the main obstacles in defect detection of railway fastener. Therefore, a defective railway fastener detection method combining multi-sensor information is proposed. The sample of railway fastener is quickly and efficiently collected by structural light equipment. An adaptive positioning and segmentation method based on depth map was designed to automatically and accurately locate and segment railway fastener in depth map, and the positioning and segmentation parameters were integrated to realize the positioning and segmentation of railway fastener on the intensive map. To solve the problem of unbalanced samples and low efficiency of sample labeling, DCGAN is used to expand the number of samples of defective railway fastener. In addition, a depth neural network with a total of 18 layers of 8 residual blocks was designed based on ResNet network to complete the detection of three types of defects:missing nut, broken spring strip and missing spring strip of railway fastener, and samples of WJ-7 type railway fastener were collected for experiment to verify the proposed method. The results showed that the average accuracy of defect detection of fastener was 97.6%, meeting the needs of engineering applications.

Key words: railway fasten, fault detection, imbalance sample, deep learning

中图分类号: