Journal of Mechanical Engineering ›› 2015, Vol. 51 ›› Issue (24): 24-40.doi: 10.3901/JME.2015.24.024
Previous Articles Next Articles
GONG Jianguo1, 2, WEN Jianfeng1, 2, XUAN Fuzhen1, 2
Received:
2014-12-26
Revised:
2015-08-24
Online:
2015-12-15
Published:
2015-12-15
GONG Jianguo, WEN Jianfeng, XUAN Fuzhen. Research Progress on Notch Effect of High Temperature Components under Creep-fatigue Loading[J]. Journal of Mechanical Engineering, 2015, 51(24): 24-40.
[1] 涂善东. 高温结构完整性原理[M]. 北京:科学出版社,2003.TU Shandong. High temperature structural integrity[M]. Beijing:Science Press,2003. [2] 轩福贞,涂善东,王正东. 含裂纹结构时间相关的疲劳断裂理论与剩余寿命评价技术[J]. 力学进展,2006,35(3):391-403.XUAN Fuzhen,TU Shandong,WANG Zhengdong. Time-dependent fatigue fracture theory and residual life assessment techniques for defective structures[J]. Advances in Mechanics,2006,35(3):391-403. [3] 蒋家羚,陈凌,范志超,等. 疲劳-蠕变交互作用的寿命预测探讨[J]. 材料研究学报,2007,21(5):537-541.JIANG Jialing,CHEN Ling,FAN Zhichao,et al. Discussion of life prediction for fatigue-creep interaction[J]. Chinese Journal of Materials Research,2007,21(5):537-541. [4] 荆建平,孟光. 汽轮机转子疲劳-蠕变损伤的非线性损伤力学分析[J]. 中国电机工程学报,2003,23(9):167-172.JING Jianping,MENG Guang. On the fatigue-creep damage analysis of a steam turbine rotor by a nonlinear continuum damage mechanics model[J]. Proceedings of the CSEE,2003,23(9):167-172. [5] 施惠基,马显锋,于涛. 高温结构材料的蠕变和疲劳研究的一些新进展[J]. 固体力学学报,2010,31(6):696-715. SHI Huiji,MA Xianfeng,YU Tao. Some new progresses on the research of creep and fatigue behaviors of high temperature structural materials[J]. Chinese Journal of Solid Mechanics,2010,31(6):696-715. [6] 姚卫星. 结构疲劳寿命分析[M]. 北京:国防工业出版社,2002. YAO Weixing. Fatigue life prediction of structures[M]. Beijing:National Defense Industry Press,2002. [7] GOYAL S,LAHA K,DAS C R,et al. Effect of constraint on creep behavior of 9Cr-1Mo steel[J]. Metallurgical and Materials Transactions A,2014,45A(2):619-632. [8] ISOBE N,YASHIRODAI K,MURATA K. Creep damage assessment for notched bar specimens of a low alloy steel considering stress multiaxiality[J]. Engineering Fracture Mechanics,2014,123:211-222. [9] YU Q M,WANG Y L,WEN Z X,et al. Notch effect and its mechanism during creep rupture of nickel-base single crystal superalloys[J]. Materials Science and Engineering:A,2009,520:1-10. [10] LUKAS P,PRECLIK P,CADEK J. Notch effects on creep behaviour of CMSX-4 superalloy single crystals[J]. Materials Science and Engineering:A,2001,298(1-2):84-89. [11] LIU D S,WEN Z X,YUE Z F. Creep damage mechanism and gamma'-phase morphology of a V-notched round bar in Ni-based single crystal superalloys[J]. Materials Science and Engineering:A,2014,605:215-221. [12] HYDE T H,BECKER A A,SONG Y,et al. Failure estimation of TIG butt-welded Inco718 sheets at 620 degrees C under creep and plasticity conditions[J]. Computational Materials Science,2006,35(1):35-41. [13] HYDE T H,XIA L,BECKER A A. Prediction of creep failure in aeroengine materials under multi-axial stress states[J]. International Journal of Mechanical Sciences,1996,38(4):385-401. [14] KONISH H J. Simplified estimation of creep-rupture strength for notched tensile specimens of austenitic stainless steels[J]. Journal of Pressure Vessel Technology,1988,110(3):314-321. [15] GANESAN V,GANESH K J,LAHA K,et al. Notch creep rupture strength of 316LN SS and its variation with nitrogen content[J]. Nuclear Engineering and Design,2013,254:179-184. [16] HA J,TABUCHI M,HONGO H,et al. Creep crack growth properties for 12CrWCoB rotor steel using circular notched specimens[J]. International Journal of Pressure Vessels and Piping,2004,81(5):401-407. [17] CURBISHLEY I,PILKINGTON R,LLOYD G J. Macroscopic creep crack growth in type 316 stainless steel. II. Effect of geometric constraint[J]. Engineering Fracture Mechanics,1986,23(2):383-400. [18] TABUCHI M,ADACHI T,YOKOBORI Jr A T,et al. Evaluation of creep crack growth properties using circular notched specimens[J]. International Journal of Pressure Vessels and Piping,2003,80(7):417-425. [19] GOYAL S,LAHA K. Creep life prediction of 9Cr-1Mo steel under multiaxial state of stress [J]. Materials Science and Engineering:A,2014,615:348-360. [20] KUMAR J G,GANESAN V,VIJAYANAND V D,et al. Creep behaviour of 316L (N) SS in the presence of notch[J]. Procedia Engineering,2013,55:534-541. [21] GOYAL S,LAHA K,DAS C R,et al. Finite element analysis of uniaxial and multiaxial state of stress on creep rupture behaviour of 2.25 Cr–1Mo steel[J]. Materials Science and Engineering:A,2013,563:68-77. [22] MERAH N. Notch-strengthening phenomenon under creep-fatigue loading conditions[J]. Journal of Pressure Vessel Technology,2000,122(2):15-21. [23] SHI D Q,HU X A,WANG J K,et al. Effect of notch on fatigue behaviour of a directionally solidified superalloy at high temperature[J]. Fatigue & Fracture Engineering Material & Structures,2013,36(12):1288-1297. [24] 杨晓光,黄佳,王井科,等. 定向凝固镍基高温合金缺口低循环疲劳性能及寿命预测[J]. 航空学报,2013,34(7):1596-1604. YANG Xiaoguang,HUANG Jia,WANG Jingke,et al. Properties and life prediction of low cycle fatigue behavior on notched DS Ni-based superalloy[J]. Acta Aeronautica et Astronautica Sinica,2013,34(7):1596-1604. [25] CHEN Q,KAWAGOISHI N,NISITANI H. Evaluation of notched fatigue strength at elevated temperature by linear notch mechanics[J]. International Journal of Fatigue,1999,21(9):925-931. [26] YUAN S H,WANG Y R,WEI D S. Experimental investigation on low cycle fatigue and fracture behavior of a notched Ni-based superalloy at elevated temperature[J]. Fatigue & Fracture of Engineering Materials & Structures,2014,37(9):1001-1012. [27] BUBPHACHOT B,WATANABE O,KAWASAKI N,et al. Crack initiation process for semicircular notched plate in fatigue test at elevated temperature[J]. Journal of Pressure Vessel Technology,2011,133(3):031403. [28] BERTO F,GALLO P,LAZZARIN P. High temperature fatigue tests of un-notched and notched specimens made of 40CrMoV13.9 steel[J]. Materials & Design,2014,63:609-619. [29] FILIPPINI M. Notched fatigue strength of single crystals at high temperature[J]. Procedia Engineering,2011,10:3787-3792. [30] 周天朋,杨晓光,候贵仓,等. DZ125 带小孔构件低循环/保载疲劳试验与分析[J]. 航空动力学报,2007,22(9):1526-1531. ZHOU Tianpeng,YANG Xiaoguang,HOU Guicang,et al. Experimental analysis of low-cycle and creep fatigue for directionally solidified DZ125 with a hole[J]. Journal of Aerospace Power,2007,22(9):1526-1531. [31] 周天朋,杨晓光,石多奇,等. DZ125光滑试样与小孔构件低循环/保载疲劳寿命建模[J]. 航空动力学报,2008,23(2):276-280.ZHOU Tianpeng,YANG Xiaoguang,SHI Duoqi,et al. Modeling of low-cycle and creep fatigue life for DZ125 smooth specimens and small hole components[J]. Journal of Aerospace Power,2008,23(2):276-280. [32] SAKANE M,OHNAMI M,AWAYA T,et al. Frequency and hold-Time effects on low cycle fatigue life of notched specimens at elevated temperature[J]. Journal of Engineering Materials and Technology,1989,111(1):54-60. [33] ANDO M,HIROSE Y,KARATO T,et al. Comparison and assessment of the creep-fatigue evaluation methods with notched specimen made of Mod. 9Cr-1Mo steel[J]. Journal of Pressure Vessel Technology,2014,136(4):041406. [34] HUANG J,YANG X,SHI D,et al. Systematic methodology for high temperature LCF life prediction of smooth and notched Ni-based superalloy with and without dwells[J]. Computational Materials Science,2014,89:65-74. [35] PONTER A R S,CHEN H,WILLIS M R,et al. Fatigue-creep and plastic collapse of notched bars[J]. Fatigue & Fracture of Engineering Material & Structures,2004,27(4):305-318. [36] SAKANE M,OHNAMI M. A study on the notch effect on the low cycle fatigue of metals in creep-fatigue interacting conditions at elevated temperature[J]. Journal of Engineering Materials and Technology,1983,105(2):75-80. [37] NOZAKI M,ZHANG S D,SAKANE M. Notch effect on creep-fatigue life for Sn-3.5Ag solder[J]. Engineering Fracture Mechanics,2011,78(8):1794-1807. [38] KASAHARA N. Strain concentration at structural discontinuities and its prediction based on characteristics of compliance change in structures[J]. JSME International Journal Series A,2001,44(3):354-361. [39] KASAHARA N,FURUHASHI I. Control mechanisms of stress redistribution locus in structures[C]//ASME 2006 Pressure Vessels and Piping/ICPVT-11 Conference. American Society of Mechanical Engineers,2006:393-400. [40] KASAHARA N. Strain concentration mechanism during stress relaxation process and its prediction[C]//The 7th International Conference on Creep and Fatigue at Elevated Temperatures (CREEP7),SA-12-3 (006). 2001:625-629. [41] ANDO M,HIROSE Y,KARATO T,et al. Comparison of creep-fatigue evaluation methods with notched specimens made of Mod.9cr-1Mo Steel[C]//Proceedings of the ASME Pressure and Piping Conference,2011,6(A and B):177-187. [42] CHABOCHE J L,ROUSSELIER G. On the plastic and viscoplastic constitutive equations—Part I:Rules developed with internal variable concept[J]. Journal of Pressure Vessel Technology,1983,105(2):153-158. [43] TONG J,ZHAN Z L,VERMEULEN B. Modelling of cyclic plasticity and viscoplasticity of a nickel-based alloy using Chaboche constitutive equations[J]. International Journal of Fatigue,2004,26(8):829-837. [44] ZHAN Z L,TONG J. A study of cyclic plasticity and viscoplasticity in a new nickel-based superalloy using unified constitutive equations. Part I:evaluation and determination of material parameters[J]. Mechanics of Materials,2007,39(1):64-72. [45] TONG J,VERMEULEN B. The description of cyclic plasticity and viscoplasticity of waspaloy using unified constitutive equations[J]. International Journal of Fatigue,2003,25(5):413-420. [46] ZHAN Z L,TONG J. A study of cyclic plasticity and viscoplasticity in a new nickel-based superalloy using unified constitutive equations. Part II:Simulation of cyclic stress relaxation[J]. Mechanics of Materials,2007,39(1):73-80. [47] STÖCKER C,ZIMMERMANN M,CHRIST H J,et al. Microstructural characterisation and constitutive behaviour of alloy RR1000 under fatigue and creep–fatigue loading conditions[J]. Materials Science and Engineering:A,2009,518(1):27-34. [48] YAGUCHI M,YAMAMOTO M,OGATA T. A viscoplastic constitutive model for nickel-base superalloy,part 1:kinematic hardening rule of anisotropic dynamic recovery[J]. International Journal of Plasticity,2002,18(8):1083-1109. [49] ZHAN Z,FERNANDO U S,TONG J. Constitutive modelling of viscoplasticity in a nickel-based superalloy at high temperature[J]. International Journal of Fatigue,2008,30(7):1314-1323. [50] CHABOCHE J L,DANG V K,CORDIER G. Modelization of the strain memory effect on the cyclic hardening of 316 stainless steel[C/CD]//Proc. 5th SMiRT, Paper L11/3,1979. [51] CHABOCHE J L. Constitutive equations for cyclic plasticity and cyclic viscoplasticity[J]. International Journal of Plasticity,1989,5(3):247-302. [52] OHNO N,KACHI Y. A constitutive model of cyclic plasticity for nonlinear hardening materials[J]. Journal of Applied Mechanics,1986,53(2):395-403. [53] 袁善虎,魏大盛,王延荣. FGH97 缺口试样基于黏塑性本构的弹塑性响应分析[J]. 航空动力学报,2012,27(10):2348-2355. YUAN Shanhu,WEI Dasheng,WANG Yanrong. Analysis of elastoplastic response in FGH97 notched specimens based on viscoplastic constitutive model[J]. Journal of Aerospace Power,2012,27(10):2348-2355. [54] CHABOCHE J L. On some modifications of kinematic hardening to improve the description of ratchetting effects[J]. International Journal of Plasticity,1991,7(7):661-678. [55] SHI D,DONG C,YANG X. Constitutive modeling and failure mechanisms of anisotropic tensile and creep behaviors of nickel-base directionally solidified superalloy[J]. Materials & Design,2013,45:663-673. [56] PALMGREN A. Durability of ball bearings[J]. ZVDI,1924,68(14):339-341. [57] MINER M A. Cumulative damage in fatigue[J]. Journal of Applied Mechanics,1945,12(3):159-164. [58] LAGNEBORG R,ATTERMO R. The effect of combined low-cycle fatigue and creep on the life of austenitic stainless steels[J]. Metallurgical Transactions,1971,2(7):1821-1827. [59] BASQUIN O H. The exponential law of endurance tests[C]//Proc. ASTM. 1910,10(Part II):625-630. [60] 陈凌,杨铁成,范志超,等. 1.25Cr0.5Mo钢缺口试样高温疲劳蠕变交互作用的试验研究[J]. 压力容器,2005,22(10):10-13. CHEN Ling,YANG Tiecheng,FAN Zhichao,et al. Experimental research of fatigue-creep interaction on notched specimens of 1.25Cr0.5Mo steel at elevated temperature[J]. Pressure Vessel Technology,2005,22(10):10-13. [61] SHIMAKAWA T,NAKAMURA K,KOBAYASHI K I. Sophisticated creep-fatigue life estimation scheme for pressure vessel components based on stress redistribution locus concept[C]//ASME/JSME 2004 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers,2004:45-51. [62] ANDO M,HIROSE Y,DATE S,et al. Verification of the prediction methods of strain range in notched specimens made of Mod. 9Cr-1Mo[C]//ASME 2010 Pressure Vessels and Piping Division/K-PVP Conference. American Society of Mechanical Engineers,2010:323-334. [63] MANSON S S,HALFORD G R,HIRSCHBERG M H. Creep-fatigue analysis by strain-range partitioning[C]//First Symposia on Design for Elevated Temperature Environment. ASME,1971:12-28. [64] NEUBER H. Theory of notch stresses:Principles for exact stress calculation[M]. Michigan:JW Edwards,1946. [65] PETERSON R E. Notch sensitivity[M]//SINES G,WAISMAN J L. Metal fatigue. New York:McGraw Hill,1959. [66] TAYLOR D. Geometrical effects in fatigue:A unifying theoretical model[J]. International Journal of Fatigue,1999,21(5):413-420. [67] SUSMEL L,TAYLOR D. A novel formulation of the theory of critical distances to estimate lifetime of notched components in the medium-cycle fatigue regime[J]. Fatigue & Fracture of Engineering Materials & Structures,2007,30(7):567-581. [68] SUSMEL L,TAYLOR D. An elasto-plastic reformulation of the theory of critical distances to estimate lifetime of notched components failing in the low/medium-cycle fatigue regime[J]. Journal of Engineering Materials and Technology,2010,132(2):021002. [69] SMITH K N,TOPPER T H,WATSON P. A stress-strain function for the fatigue of metals (Stress-strain function for metal fatigue including mean stress effect)[J]. Journal of Materials,1970,5:767-778. [70] 陈学东,范志超,江慧丰,等. 复杂加载条件下压力容器典型用钢疲劳蠕变寿命预测方法[J]. 机械工程学报,2009,45(2):81-87.CHEN Xuedong,FAN Zhichao,JIANG Huifeng,et al. Creep-fatigue life prediction methods of pressure vessel typical steels under complicated loading conditions[J]. Journal of Mechanical Engineering,2009,45(2):81-87. [71] 陈学东,范志超,陈凌,等. 三种疲劳蠕变交互作用寿命预测模型的比较及其应用[J]. 机械工程学报,2007,43(1):62-68.CHEN Xuedong,FAN Zhichao,CHEN Ling,et al. Comparison among three fatigue-creep interaction life prediction models and their applications[J]. Chinese Journal of Mechanical Engineering,2007,43(1):62-68. [72] JEONG C Y,CHOI B G,NAM S W. Normalized life prediction in terms of stress relaxation behavior under creep-fatigue interaction[J]. Materials Letters,2001,49(1):20-24. [73] NAM S W,LEE S C,LEE J M. The effect of creep cavitation on the fatigue life under creep-fatigue interaction[J]. Nuclear Engineering and Design,1995,153(2):213-221. [74] NAM S W. Assessment of damage and life prediction of austenitic stainless steel under high temperature creep–fatigue interaction condition[J]. Materials Science and Engineering:A,2002,322(1):64-72. [75] JIANG H,CHEN X,FAN Z,et al. A new empirical life prediction method for stress controlled fatigue–creep interaction[J]. Materials Letters,2008,62(24):3951-3953. [76] FAN Z,CHEN X,CHEN L,et al. An equivalent strain energy density life prediction model[J]. Journal of Pressure Equipment and Systems,2007,5:105-109. [77] FAN Z,CHEN X,CHEN L,et al. Prediction method of fatigue-creep interaction life based on ductility exhaustion theory[J]. Acta Metallurgica Sinica,2006,42(4):415-420. [78] ZHU S P,HUANG H Z,LI H,et al. A new ductility exhaustion model for high temperature low cycle fatigue life prediction of turbine disk alloys[J]. International Journal of Turbo and Jet Engines,2011,28(2):119-131. [79] CHEN L,JIANG J,FAN Z,et al. A new model for life prediction of fatigue-creep interaction[J]. International Journal of Fatigue,2007,29(4):615-619. [80] SHANG D G,SUN G Q,YAN C L,et al. Creep-fatigue life prediction under fully-reversed multiaxial loading at high temperatures[J]. International Journal of Fatigue,2007,29(4):705-712. [81] ANDO M,HASEBE S,KOBAYASHI S,et al. Thermal transient test and strength evaluation of a tubesheet structure made of Mod.9Cr-1Mo steel. Part II:Creep-fatigue strength evaluation[J]. Nuclear Engineering and Design,2014,275:422-432. [82] YAGUCHI M,TAKAHASHI Y. Ratchetting of viscoplastic material with cyclic softening,part 1:experiments on modified 9Cr-1Mo steel[J]. International Journal of Plasticity,2005,21(1):43-65. [83] YAGUCHI M,TAKAHASHI Y. Ratchetting of viscoplastic material with cyclic softening,part 2:Application of constitutive models[J]. International Journal of Plasticity,2005,21(4):835-860. [84] WANG WZ,BUHL P,KLENK A. A unified viscoplastic constitutive model with damage for multi-axial creep-fatigue loading[J]. International Journal of Damage Mechanics,2015,24(3):363-382. [85] WANG P,CUI L,SCHOLZ A,et al. Multiaxial thermomechanical creep-fatigue analysis of heat-resistant steels with varying chromium contents[J]. International Journal of Fatigue, 2014,67:220-227. [86] SHENOY M M,GORDON A P,MCDOWELL D L,et al. Thermomechanical fatigue behavior of a directionally solidified Ni-base superalloy[J]. Journal of Engineering Materials and Technology,2005,127(3):325-336. [87] CISILINO A P,ALIABADI M H. Three-dimensional boundary element analysis of fatigue crack growth in linear and non-linear fracture problems[J]. Engineering Fracture Mechanics,1999,63(6):713-733. [88] DI PISA C,ALIABADI M H. Fatigue crack growth analysis of assembled plate structures with dual boundary element method[J]. Engineering Fracture Mechanics,2013,98:200-213. [89] PROVIDAKIS C P. Creep analysis of V-notched metallic plates:Boundary element method[J]. Theoretical and Applied Fracture Mechanics,1999,32(1):1-7. [90] PINEDA LEÓN E,RODRÍGUEZ-CASTELLANOS A,FLORES-GUZMÁN N,et al. Combined plasticity and creep analysis in 2D by means of the boundary element method[J]. Engineering Analysis with Boundary Elements,2013,37(11):1436-1444. [91] SKELTON R P,GANDY D. Creep–fatigue damage accumulation and interaction diagram based on metallographic interpretation of mechanisms[J]. Materials at High Temperatures,2008,25(1):27-54. [92] American Society of Mechanical Engineers. 2013 ASME boiler & pressure vessel code,III-NH,Class 1 components in elevated temperature service[S]. New York:ASME,2013. [93] TAKAHASHI Y. Study on creep-fatigue evaluation procedures for high-chromium steels—Part I:Test results and life prediction based on measured stress relaxation[J]. International Journal of Pressure Vessels and Piping,2008,85(6):406-422. [94] TAKAHASHI Y,DOGAN B,GANDY D. Systematic evaluation of creep-fatigue life prediction methods for various alloys[J]. Journal of Pressure Vessel Technology,2013,135:061204. [95] OLDHAM J,ABOU-HANNA J. A numerical investigation of creep-fatigue life prediction utilizing hysteresis energy as a damage parameter[J]. International Journal of Pressure Vessels and Piping,2011(81):149-157. [96] CHEN H F,PONTER A R S. Linear matching method on the evaluation of plastic and creep behaviours for bodies subjected to cyclic thermal and mechanical loading[J]. International Journal for Numerical Methods in Engineering,2006,68(1):13-32. [97] CHEN H F,CHEN W H,URE J. A direct method on the evaluation of cyclic steady state of structures with creep effect[J]. Journal of Pressure Vessel Technology,2014,136:061404. [98] GORASH Y,CHEN H F. Creep-fatigue life assessment of cruciform weldments using the linear matching method[J]. International Journal of Pressure Vessel and Piping,2013,104:1-13. [99] JETTER R I. An alternate approach to evaluation of creep-fatigue damage for high temperature structural design criteria[C/CD]//ASME 1998 Pressure Vessels and Piping Conference,1998. [100] KOBATAKE K,OHTA H,ISHIYAMA H,et al. An alternate approach to creep-fatigue damage with elastic follow-up for high temperature structural design[J]. Journal of National Fisheries University,1999,48(1):25-39. [101] ASAYAMA T,JETTER R I. An overview of creep-fatigue damage evaluation methods and an alternative approach[C/CD]//ASME 2008 Pressure Vessels and Piping Conference,2008. [102] WANG Y,LI T,SHAM T L S,et al. Evaluation of creep-fatigue damage based on simplified model test approach[C/CD]//ASME 2013 Pressure Vessels and Piping Conference,2013. |
[1] | WU Jizhan, WEI Peitang, WU Shaojie, LIU Huaiju, ZHU Caichao. Rolling Contact Fatigue Performance Prediction and Surface Integrity Optimization of Aviation Gear Steel [J]. Journal of Mechanical Engineering, 2024, 60(8): 81-93. |
[2] | REN Zhongkai, LI He, XU Yanan, CHENG Qian, FENG Hao, WANG Tao. Constitutive Model and Microstructural Evolution for Tensile Behavior of Carbon Steel Ultrathin Strip under Pulsed Electric Field [J]. Journal of Mechanical Engineering, 2024, 60(6): 245-260. |
[3] | ZHANG Junhui, LIU Shihao, XU Bing, HUANG Weidi, LÜ Fei, HUANG Xiaochen. Research Status and Development Trends on Intelligent Key Technology of the Axial Piston Pump [J]. Journal of Mechanical Engineering, 2024, 60(4): 32-49. |
[4] | ZHANG Wei, LI Rujun, GE Shitao, PENG Yan. Two-scale Analysis of High-cycle Fatigue Damage Based on Intrinsic Dissipation Theory [J]. Journal of Mechanical Engineering, 2024, 60(20): 120-133. |
[5] | XU Teng, DENG Chunyang, RAN Jiaqi, GONG Feng, TANG Heng. Research Progress on Strain Rate Effect and Dynamic Constitutive of Metals [J]. Journal of Mechanical Engineering, 2024, 60(2): 81-98. |
[6] | WANG Gang, GU Zhengwei, YU Ge, LI Xin. Plastic Flow Behavior and Constitutive Model of 7075-H18 Aluminum Alloy Sheet Based on Hot Forming Process [J]. Journal of Mechanical Engineering, 2024, 60(2): 188-196. |
[7] | LIU Xiaofeng, ZHANG Tianyu, WEI Daiping, BO Lin, CHEN Bingkui. Adaptive Particle Filtering Prediction of Crack Damage Evolution in Composite Materials [J]. Journal of Mechanical Engineering, 2024, 60(18): 32-42. |
[8] | CHEN Jian, MENG Yixing, YUAN Shenfang, XU Qiuhui, WANG Hui. Digital Twins Prediction of Crack Growth Life for the Lap Joint Structure Combined with Guided Wave Monitoring Data [J]. Journal of Mechanical Engineering, 2024, 60(16): 34-42. |
[9] | CHENG Ji, CAO Hongdong, QU Shuguang, ZHENG Kailun, HE Zhubin. Visco-plastic Constitutive Model Based Research on the Modelling of Process Parameters of Hot Gas Forming AA6061 Tubes [J]. Journal of Mechanical Engineering, 2024, 60(16): 108-117. |
[10] | ZHAO Lei, ZHANG Libin, SONG Kai, XU Lianyong, HAN Yongdian, HAO Kangda. Research on Creep-fatigue Cyclic Deformation of New Martensitic Heat Resistant Steel [J]. Journal of Mechanical Engineering, 2024, 60(16): 118-129. |
[11] | HE Weilin, MENG Bao, WAN Min. Study on U-bending Springback Behavior of GH4169 Ultrathin Strip [J]. Journal of Mechanical Engineering, 2024, 60(14): 174-184. |
[12] | KE Yuzhi, YUAN Wei, ZHANG Shaopeng, ZHOU Feikun, LU Liang, TANG Yong. Study on Thermo-mechanical Coupling Characteristics of Hot Pressing on Surface Microstructures of Proton Exchange Membrane for Fuel Cells [J]. Journal of Mechanical Engineering, 2024, 60(14): 317-328. |
[13] | CHEN Rui, CHENG Shimin, WEN Shicheng, ZHAO Ziheng, PENG Ruitao, HU Congfang, XIAO Xiangwu. Structural Optimization of 7150-T6 Aeronautical Aluminum Alloy Thin-walled Open Circular Tube Based on J-C Model Modification [J]. Journal of Mechanical Engineering, 2024, 60(11): 95-104. |
[14] | ZHU Ting, CHEN Zhaoxiang, ZHOU Di, CHEN Zhen, HU Bing, PAN Ershun. Bayesian-LSTM Neural Network-based Remaining Useful Life Prediction and Uncertainty Estimation of Rollers in A Hot Strip Mill [J]. Journal of Mechanical Engineering, 2024, 60(11): 181-190. |
[15] | HE Haifeng, LIU Huaiju, ZHU Caichao, LI Gaomeng, CHEN Difa. Quantitative Effect of Residual Stress on Gear Bending Fatigue [J]. Journal of Mechanical Engineering, 2023, 59(4): 53-61. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||