• CN:11-2187/TH
  • ISSN:0577-6686

›› 2008, Vol. 44 ›› Issue (12): 131-136.

• 论文 • 上一篇    下一篇

扫码分享

基于MEMS的压电微泵建模与优化

崔琦峰;刘成良;查选芳   

  1. 上海交通大学机械工程与动力学院;马里兰大学学院市分校
  • 发布日期:2008-12-15

Modeling and Optimization of MEMS-based Piezoelectric Micropump

CUI Qifeng;LIU Chengliang;ZHA Xuanfang   

  1. School of Mechanical Engineering, Shanghai Jiaotong University College Park, University of Maryland
  • Published:2008-12-15

摘要: 以压电驱动的无阀微泵为研究对象,根据扩张管/收缩管的压力损失系数和连续方程,建立了无阀微泵的理论模型。利用有限元分析软件,建立了无阀微泵有限元模型,进行了耦合场仿真分析。模拟并分析了不同边界条件下驱动电压、电压频率、泵膜厚度、压电薄膜厚度和压电材料对无阀微泵输出特性的影响。仿真结果显示,无阀微泵具有很好的整流特性,并且驱动电压越大,输出特性越好。在局部固定边界条件下,当压电薄膜上施加电场强度为500 V/mm的驱动电压时,存在最优的压电薄膜厚度,使得微泵的输出流量最大。研究结果为无阀微泵的优化设计提供了依据。

关键词: 结构优化, 数值计算, 无阀微泵, 压电驱动

Abstract: Based on the pressure loss coefficient through diffuser/nozzle elements and conservation equation, the analysis model is established for a valveless micropump excited by the piezoelectric actuator. The finite element model of the valveless micropump is built by using the finite element software, and the coupled-field simulation analysis is carried out. The effects of excitation voltage, voltage frequency, pump membrane thickness, piezoelectric membrane thickness and piezoelectric material on the pump performance are simulated and analyzed under different boundary conditions. The results show the valveless micropump has good flow rectification, and its output characteristics increase with the increase of the excitation voltage. There is an optimal piezoelectric membrane thickness for the largest flow under the partly clamped boundary condition and the electric-field strength of 500 V/mm. These results are helpful to designing the optimal valveless micropump.

Key words: Numerical simulation, Piezoelectric actuation, Structure optimization, Valveless micropump

中图分类号: