[1] DUAN J, FU Q, MO C H, et al. Review of polarization imaging for international military application[C]//5th International Symposium on Photoelectronic Detection and Imaging (ISPDI)-Imaging Sensors and Applications. SPIE-Int Soc Optical Engineering, Beijing, China, 2013.
[2] 贾刚,汪力. 太赫兹波(TeraHertz)科学与技术[J]. 中国科学基金, 2002, 16(4):200-203. JIA Gang, WANG Li. Terahertz science and technology[J]. Bulletin of National Science Foundation of China, 2002, 16(4):200-203.
[3] 邱桂花,于名讯,韩建龙,等. 太赫兹雷达及其隐身技术[J]. 火控雷达技术, 2013, 42(4):28-32. QIU Guihua, YU Mingxun, HAN Jianlong, et al. Terahertz radar and its stealth technique[J]. Fire Control Radar Technology, 2013, 42(4):28-32.
[4] PARROTT E P J, SUN Y W, PICKWELLMACPHERSON E. Terahertz spectroscopy:Its future role in medical diagnoses[J]. Journal of Molecular Structure, 2011, 1006(1-3):66-76.
[5] SLINGERLAND E J, JAHNGEN E G E, GOYETTE T M, et al. Terahertz absorption spectra of nitromethane[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2011, 112(14):2323-2329.
[6] 李纪舟, 蒋文涛. 太赫兹波通信技术研究现状及展望[J]. 通信技术, 2014, 47(4):348-353. LI Jizhou, JIANG Wentao. Terahertz communication technology research status and prospects[J]. Communications Technology, 2014, 47(4):348-353.
[7] QinetiQ. QinetiQ Technology Showcase-New Technology Products[EB/OL].[2012-05-25]. SPO-20 Technology Showcase. http://technologyshowcase.qinetiq.com/.
[8] 成彬彬. 0.14THz超高分辨成像雷达实验研究[J]. 中国工程物理研究院科技年报, 2012(1):142-144. CHENG Binbin. Experimental researches on 0.14THz ultra-high resolution imaging radar[J]. Science and Technology Annual Report of China Academy of Engineering Physics, 2012(1):142-144.
[9] 中国电子科技集团. 中国电科完成全固态太赫兹成像雷达系统样机研制[EB/OL].[2016-06-19]. https://military.china.com/important/11132797/20160619/22897749.html. China Electronics Technology Group. Development of prototype of all-sdild-state ferahertz imaging radar system in China Electronics Technology Group.[2016-06-19]. https://military.china.com/important/11132797/20160619/22897749.html.
[10] 马成举,陈延伟,向军,等. 太赫兹辐射产生技术进展[J]. 激光与光电子进展, 2007, 44(4):56-61. MA Chengju, CHEN Yanwei, XIANG Jun, et al. Progress in generation of terahertz radiation[J]. Laser & Optoelectronics Progress, 2007, 44(4):56-61.
[11] 王自成,陆德坚,王莉,等. THz返波管圆波导梳状慢波结构的研究[J]. 电子与信息学报, 2008, 30(11):2792-2794. WANG Zicheng, LU Dejian, WANG Li, et al. Investigation of circular comb slow-wave structure of THz backward-wave oscillators[J]. Journal of Electronics & Information Technology, 2008, 30(11):2792-2794.
[12] ZHANG M H, WEI Y Y, GUO G, et al. A novel 140-GHz sheet-beam folded-waveguide traveling-wave tube[J]. Journal of Electromagnetic Waves and Applications, 2012, 26(17-18):2332-2340.
[13] ZHANG M H, WEI Y Y, GUO G, et al. Study on two kinds of novel 220 GHz folded-waveguide traveling-wave tube[J]. Japanese Journal of Applied Physics, 2014, 53(3):036201-1-036201-6.
[14] MINEO M, PAOLONI C. Corrugated rectrangular waveguide tunable backward wave oscillator for terahertz applications[J]. IEEE Transactions on Electron Devices, 2010, 57(6):1481-1484.
[15] LIU Q L, WANG Z C, LIU P K, et al. A THz backward-wave oscillator based on a double-grating rectangular waveguide[J]. IEEE Transactions on Electron Devices, 2013, 60(4):1463-1468.
[16] XU X, WEI Y Y, FEI S, et al. A watt-class 1-THz backward-wave oscillator based in sine waveguide[J]. Physics of Plasmas, 2012, 19(013113):013113.
[17] GHOSH T K, CHALLIS A J, TOKELEY A, et al. Development of ultra wide band helix mini-TWTs[C]//IEEE International Vacuum Electronics Conference, Monterey, USA, 2010, 303-304.
[18] DATTA S K, KUMAR L, BASU B N. Analysis of dielectric loss in a helix slow-wave structure[J]. Defence Science Journal, 2009, 59(5):549-552.
[19] SCHEITRUM G P. Microfabricated MVEDs[C]//Modern Mircrowave and Millimeter-Wave Power Electronics, Piscataway, USA, 2005, 343-395.
[20] KOROVIN S D, MESYATS G A, PEGEL I V, et al. Pulse-width limitation in the relativistic backward wave oscillator[J]. IEEE Transactions on Plasma Science, 2000, 28(3):485-495.
[21] 王亚军,徐翱,颜胜美,等. 微加工工艺误差对THz折叠波导行波管性能影响[J]. 太赫兹科学与电子信息学报, 2015, 13(2):179-183. WANG Yajun, XU Ao, YAN Shengmei, et al. Effect of microfabrication process on terahertz folded waveguide TWT[J]. Journal of Terahertz Science and Electronic Information Technology, 2015, 13(2):179-183.
[22] SRIVASTAVA A. Microfabricated terahertz vacuum electron devices:Technology, capabilities and performance overview[J]. European Journal of Advances in Engineering and Technology, 2015, 2(8):54-64.
[23] GHODSSI R, LIN P. MEMS materials and processes handbook[M]. Berlin:Springer, 2011.
[24] FU C, HUAN H. Different methods for the fabrication of UV-LIGA molds using SU-8 with tapered de-molding angles[J]. Microsystem Technologies, 2007, 13(3-4):293-298.
[25] JOYE C D, CALAME J P, NGUYEN K, et al. Microfabrication of wideband, distributed beam amplifiers at 220 GHz[C]//IEEE International Vacuum Electronics Conference, Bangalore, India, 2011, 343-344.
[26] BAIG A, SHIN Y M, BARNETT L R, et al. Design, fabrication and RF testing of near-THz sheet beam TWTA[J]. Terahertz Science and Technology, 2011, 4(4):181-207.
[27] CLAUDIO P, ALDO D C, FRANCESCA B, et al. Design and fabrication of a 1 THz backward wave amplifier[J]. Terahertz Science and Technology, 2011, 4(4):149-163.
[28] COLIN D J, JEFFREY P C, ALAN M C, et al. High-power copper gratings for a sheet-beam traveling-wave amplifier at G-band[J]. IEEE Transactions on Electron Devices, 2013, 60(1):506-509.
[29] COLIN D J, ALAN M C, JEFFREY P C, et al. Demonstration of a high power, wideband 220-GHz traveling wave amplifier fabricated by UV-LIGA[J]. IEEE Transactions on Electron Devices, 2014, 61(6):1672-1678.
[30] COLIN D J, ALAN M C, REGINALD L J, et al. Microfabrication methods for a 233 GHz traveling wave amplifier[C]//Eighteenth International Vacuum Electronics Conference, London, UK, 2017.
[31] GHONEIM M T, HUSSAIN M M. Highly manufacturable deep (sub-millimeter) etching enabled high aspect ratio complex geometry lego-like silicon electronics[J]. Small, 2017, 13(16):UNSP 1601801.
[32] YEOM J, WU Y, SELBY J C, et al. Maximum achievable aspect ratio in deep reactive ion etching of silicon due to aspect ratio dependent transport and the microloading effect[J]. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics:Materials, Processing, Measurement, and Phenomena, 2005, 23(6):2319-2330.
[33] SENGELE S, JIANG H, BOOSKE J H, et al. Microfabrication and characterization of a selectively metallized W-band meander-line TWT circuit[J]. IEEE Transactions on Electron Devices, 2009, 56(5):730-737.
[34] BASTEN M A, TUCEK J C, GALLAGHER D A, et al. A 0.85 THz vacuum-based power amplifier[C]//IEEE Thirteenth International Vacuum Electronics Conference, Monterey, USA, 2012.
[35] BAIK C W, JUN S Y, AHN H Y, et al. Return loss measurement of a microfabricated slow-wave structure for backward-wave oscillation[C]//35th International Conference on Infrared, Millimeter, and Terahertz Waves, Rome, Italy, 2010.
[36] BAIK C W, KIM Y, AHN H Y, et al. Enhanced RF performance in multi-tunnel backward-wave oscillators[C]//IEEE International Vacuum Electronics Conference, Rome, Italy, 2014.
[37] 余祖元,郭东明,贾振元. 微细电火花加工技术[J]. 中国科技论文在线, 2007, 2(3):214-220. YU Zuyuan, GUO Dongming, JIA Zhenyuan. Micro electrical discharge machining technology[J]. Sciencepaper Online, 2007, 2(3):214-220.
[38] FENG J J, CAI J, HU Y F, et al. Development of w-band folded waveguide pulsed TWTs[J]. IEEE Transactions on Electron Devices, 2014, 61(6):1721-1725.
[39] SUMATHY M,AUGUSTIN D,DATTA S K,et al. Design and RF characterization of w-band meander-line and folded-waveguide slow-wave structures for TWTs[J]. IEEE Transactions on Electron Devices, 2013, 60(5):1769-1775.
[40] BRATMAN V L, FEDOTOV A E, MAKHALOV P B, et al. Design and numerical analysis of w-band oscillators with hollow electron beam[J]. IEEE Transactions on Electron Devices, 2014, 61(6):1795-1799.
[41] 刘俊,周亚军,戴晶怡,等. 0.22THz折叠波导慢波结构微细WEDM加工技术[J]. 太赫兹科学与电子信息学报, 2014, 12(3):330-333. LIU jun, ZHOU Yajun, DAI Jingyi, et al. Micro-WEDM technology of 0.22 THz folded waveguide slow wave structure[J]. Journal of Terahertz Science and Electronic Information Technology, 2014, 12(3):330-333.
[42] KIRSCH B, BOHLEY M, ARRABIYEH P A, et al. Application of ultra-small micro grinding and micro milling tools:Possibilities and limitations[J]. Micromachines, 2017, 8(9):261.
[43] GAMZINA D, BARCHFELD R, BARNETT L R, et al. Nano CNC milling technology for terahertz vacuum electronic devices[C]//IEEE International Vacuum Electronics Conference, Bangalore, India, 2011.
[44] BARCHFELD R, GAMZINA D, BAIG A, et al. Nano CNC milling of two different designs of 0.22 THz TWT circuits[C]//IEEE International Vacuum Electronics Conference, Monterey, USA, 2012.
[45] BAIG A, GAMZINA D, BARCHFELD R, et al. 220 GHz ultra wide band TWTA:Nano CNC fabrication and RF testing[C]//IEEE International Vacuum Electronics Conference, Paris, France, 2013.
[46] BÜSSING H, GREDE A, HENKE H. Development of a w-band folded waveguide TWT[C]//Germany Microwave Conference (GeMIC), Aachen, Germany, 2014.
[47] LEE I, SAWANT A, SO J, et al. Design study of an energy-recirculating G-band self-driving folded waveguide travelling wave tube[C]//IEEE International Vacuum Electronics Conference, Monterey, USA, 2016.
[48] HIMES L, GAMZINA D, POPOVIC B, et al. Development of nano machining techniques to bridge the terahertz gap[C]//IEEE International Vacuum Electronics Conference, Monterey, USA, 2016.
[49] BAIG A, GAMZINA D, KIMURA T, et al. Performance of a nano-CNC machined 220-GHz traveling wave tube amplifier[J]. IEEE Transactions on Electron Devices, 2017, 64(5):2390-2397.
[50] GAMZINA D, HIMES L G, BARCHFELD R, et al. Nano-CNC machining of sub-THz vacuum electron devices[J]. IEEE Transactions on Electron Devices, 2016, 63(10):4067-4073.
[51] 徐翱,周泉丰,阎磊,等. 0.22 THz折叠波导行波管初步实验研究[J]. 强激光与粒子束, 2013, 25(11):2954-2958. XU Ao, ZHOU Quanfeng, YAN Lei, et al. Initial experimental study on 0.22 THz folded waveguide TWT[J]. High Power Laser and Particle Beams, 2013, 25(11):2954-2958.
[52] 陈学斌,高石磊,孙传国,等. 微径铣刀在太赫兹波导加工中的应用[J]. 微波学报, 2015(S1):108-111. CHEN Xuebin, GAO Shilei, SUN Chuanguo, et al. Application of micro-mill in the processing of terahertz wave-guide[J]. Journal of Microwaves, 2015(S1):108-111.
[53] 颜胜美,苏伟,徐翱,等. 多注太赫兹折叠波导行波管的设计与模拟[J]. 太赫兹科学与电子信息学报, 2015, 13(2):184-202. YAN Shengmei, SU Wei, XU Ao, et al. Design and simulation of multi-beam terahertz folded waveguide TWT[J]. Journal of Terahertz Science and Electronic Information Technology, 2015, 13(2):184-202.
[54] 颜胜美. 多注太赫兹折叠波导行波管技术研究[D]. 绵阳:中国工程物理研究院, 2015. YAN Shengmei. Research on multi-beam terahertz folded waveguide TWT[D]. Mianyang:China Academy of Engineering Physics, 2015.
[55] HU P, LEI W Q, SONG R, et al. Development of a 0.32 THz folded waveguide TWT[C]//Eighteenth International Vacuum Electronics Conference, London, UK, 2017.
[56] 裴旭东. 太赫兹慢波结构微铣削加工仿真与实验研究[D]. 哈尔滨:哈尔滨工业大学, 2017. PEI Xudong. Research on micro-milling of THz slow wave structure by simulation and experiments[D]. Harbin:Harbin Institute of Technology, 2017. |