• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (17): 255-265.doi: 10.3901/JME.2025.17.255

• 数字化设计与制造 • 上一篇    

扫码分享

基于特征迁移的小样本增材制造疲劳寿命预测方法

范志明1, 甘磊2, 淦志强1, 王谙斌1, 苏永辉1, 吴昊1   

  1. 1. 同济大学航空航天与力学学院 上海 200092;
    2. 哈尔滨工业大学(深圳)理学院 深圳 518055
  • 收稿日期:2024-09-08 修回日期:2025-02-13 发布日期:2025-10-24
  • 作者简介:范志明,男,1998年出生。主要研究方向为材料疲劳。E-mail:2130876@tongji.edu.cn;吴昊(通信作者),男,1979年出生,博士,副教授,博士研究生导师。主要研究方向为材料疲劳、神经网络方法应用。E-mail:wuhao@tongji.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(12372081, 11972255)。

Feature-transfer Learning Based Model for Fatigue Life Prediction of Additive Manufactured Materials Using Small Samples

FAN Zhiming1, GAN Lei2, GAN Zhiqiang1, WANG Anbin1, SU Yonghui1, WU Hao1   

  1. 1. School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092;
    2. School of Science, Harbin Institute of Technology, Shenzhen 518055
  • Received:2024-09-08 Revised:2025-02-13 Published:2025-10-24

摘要: 数据驱动模型因其强大的高维非线性建模能力而被广泛用于预测增材制造材料的疲劳寿命。然而,受限于增材疲劳中广泛存在的小样本工况,该类模型在实际应用中往往无法获得足量的训练数据,适用范围因此仍十分有限。针对这一问题,通过引入迁移学习,在迁移成分分析框架下开展源域数据融合及基于聚类指标的超参数优化,提出了一种小样本增材制造疲劳寿命预测模型。该模型可协同利用不同工况下的实验数据对疲劳寿命进行建模,因此能够有效弥补单一工况下数据不足和多工况下数据分布不一致等问题。基于激光粉末床熔融成形316L不锈钢实验数据,开展了模型验证。结果显示:相较于未配置迁移学习和聚类指标以及未进行源域数据融合的几类退化模型,所提模型兼具更优的预测性能和更低的数据需求,对于处理增材疲劳寿命显示出良好的应用潜力。

关键词: 增材制造, 疲劳寿命预测, 数据驱动, 迁移学习, 聚类

Abstract: Data-driven models have been widely used to predict the fatigue life of additive manufactured materials because of their powerful capability in high-dimensional nonlinear modeling. However, owing to the high requirement of data support, these models are not economically feasible for many practical cases. To tackle this issue, a transfer learning-based model for fatigue life prediction of additive manufactured materials is proposed, through combining source and target domain data and introducing a clustering-based procedure for hyper parameter optimization. The proposed model can collaboratively model fatigue life using experimental data from different manufacturing conditions, effectively addressing the insufficiency of training data under a single condition and the inconsistency of data distributions under multiple conditions. Experimental results of 316L stainless steel processed by laser powder bed fusion are collected for model verification. The results show that, compared to several degradation models, the proposed model has better prediction performance and lower data requirement, exhibiting promising potential in predicting the fatigue life of additive manufactured materials.

Key words: additive manufacturing, fatigue life prediction, data-driven model, transfer learning, clustering

中图分类号: