• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (13): 293-301.doi: 10.3901/JME.2025.13.293

• 数字化设计与制造 • 上一篇    

扫码分享

物理-数据融合驱动的天然橡胶疲劳寿命预测建模方法

刘湘楠1, 杨宇鑫1, 石伟2,3, 何宽芳4   

  1. 1. 湖南科技大学机电工程学院 湘潭 411201;
    2. 诺博橡胶制品有限公司 保定 071000;
    3. 河北省汽车减震与密封橡胶产品技术创新中心 保定 071000;
    4. 佛山大学机电工程与自动化学院 佛山 528225
  • 收稿日期:2024-07-10 修回日期:2025-01-10 发布日期:2025-08-09
  • 作者简介:刘湘楠,男,1992年出生,博士,副教授。主要研究方向为动力机械装备振动响应与强度分析、机械结构疲劳寿命预测、动力机械装备耐久性评估。E-mail:lxn920613@hnust.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(52405151)。

Physically-data-driven Modeling Method for Fatigue Life Prediction of Natural Rubber

LIU Xiangnan1, YANG Yuxin1, SHI Wei2,3, HE Kuanfang4   

  1. 1. School of Mechanical and Electrical Engineering, Hunan University of Science and Technology, Xiangtan 411201;
    2. Nobo Rubber Products Co., Ltd., Baoding 071000;
    3. Hebei Automotive Rubber AVS & Sealing Tech Center, Baoding 071000;
    4. School of Mechanical Engineering and Automation, Foshan University, Foshan 528225
  • Received:2024-07-10 Revised:2025-01-10 Published:2025-08-09

摘要: 在现有的天然橡胶疲劳寿命预测模型中,物理模型存在建模复杂、适用范围窄等问题,而数据驱动模型始终受限于小样本工况,导致疲劳寿命预测精度低。为解决上述问题,融合物理建模方法的理论优势和数据驱动方法的高效性,提出了一种物理-数据融合驱动的天然橡胶疲劳寿命预测建模方法。该模型以对数应变幅值、应变比为输入变量,以实测疲劳寿命与物理模型预测寿命之间的相对误差值为输出变量。根据天然橡胶单轴疲劳试验数据,分别建立了基于裂纹萌生法的天然橡胶疲劳寿命预测物理模型、基于支持向量机的数据驱动模型以及物理-数据融合驱动模型。以天然橡胶实测疲劳寿命为基准,比较了三种模型的预测精度。研究发现,相较于现有的疲劳寿命预测模型,物理-数据融合驱动模型在预测精度方面表现更佳,预测寿命均分布在实测寿命的1.5倍分散线内。研究结果表明:利用物理-数据融合驱动模型能够更精准地预测天然橡胶的疲劳寿命,从而为天然橡胶结构件的抗疲劳设计提供理论依据。

关键词: 天然橡胶, 疲劳寿命, 单轴疲劳, 物理模型, 数据驱动

Abstract: Among the existing fatigue life prediction models for natural rubber (NR), the physical models face challenges such as complex modeling and a narrow scope of application, whereas data-driven models are often constrained by small sample sizes, resulting in low prediction accuracy for fatigue life. To address these issues, a physically-data-driven modeling method for predicting the fatigue life of NR is proposed. The model uses logarithmic strain amplitude and strain ratio as input variables, and the errors between the experimentally measured fatigue life and the life predicted by the physical model as the output variable. Based on uniaxial fatigue test data of NR, a physical model for fatigue life prediction based on the crack initiation method, a data-driven model using support vector machines, and a physically-data-driven model are developed, respectively. By comparing the prediction accuracy of these models against the measured fatigue life of natural rubber, it is found that the physically-data-driven model demonstrated superior prediction accuracy, with predicted lives distributed within 1.5 times the scatter band of the measured lives. The study demonstrates that the physically-data-driven model can more accurately predict the fatigue life of NR, providing a theoretical foundation for the fatigue-resistant design of NR components.

Key words: natural rubber, fatigue life, uniaxial fatigue, physical model, data-driven

中图分类号: