• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (13): 315-326.doi: 10.3901/JME.2025.13.315

• 数字化设计与制造 • 上一篇    

扫码分享

基于电场驱动微3D打印复合增材制造银/铜/镍基金属网格透明天线

靳茂鹏1, 张厚超1, 王飞1, 李言胜2, 陈硕2, 李义睿1, 白彦军1, 李红珂1, 许权1, 赵佳伟1, 张广明1, 兰红波1   

  1. 1. 青岛理工大学山东省增材制造工程技术研究中心 青岛 266520;
    2. 青岛理工大学信息与控制工程学院 青岛 266520
  • 收稿日期:2024-07-11 修回日期:2024-12-24 发布日期:2025-08-09
  • 作者简介:靳茂鹏,男,1995年出生。主要研究方向为透明天线;微纳3D打印。E-mail:2045219680@qq.com;王飞,男,博士,副教授,硕士研究生导师。主要研究方向为微纳尺度3D打印、天线增材制造,透明天线等。E-mail:wangfei@qut.edu.cn;兰红波(通信作者),男,1970年出生,博士,教授,博士研究生导师。主要研究方向为微纳尺度3D打印、先进电子微纳增材制造,复合微纳增材制造、透明天线、微纳制造。E-mail:hblan99@126.com
  • 基金资助:
    国家自然科学基金(52175331)和山东省自然科学基金重大基础研究(ZR2020ZD04)资助项目。

Fabrication of Transparent Antenna Using Metal Mesh Made of Silver/Copper/Nickel through Additive Manufacturing Based on Electric-field-driven Microscale 3D Printing

JIN Maopeng1, ZHANG Houchao1, WANG Fei1, LI Yansheng2, CHEN Shuo2, LI Yirui1, BAI Yanjun1, LI Hongke1, XU Quan1, ZHAO Jiawei1, ZHANG Guangming1, LAN Hongbo1   

  1. 1. Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao 266520;
    2. School of Information and Control Engineering, Qingdao University of Technology, Qingdao 266520
  • Received:2024-07-11 Revised:2024-12-24 Published:2025-08-09

摘要: 金属网格透明天线在5G/6G通信、智能驾驶、可穿戴电子等领域应用广泛。然而随着通信技术的快速发展,透明天线的迭代升级速度加快,当前高性能金属网格透明天线的低成本、快速、灵活制造是制约其产品设计、性能验证以及商业化应用最大的技术瓶颈。针对这一挑战性难题,提出一种银/铜/镍基复合金属网格透明天线,具有高导电性、低导体损耗的优势;提出了一种基于电场驱动微3D打印的复合增材制造方法实现多材料复合金属网格微结构的灵活快速制造。该技术通过电场驱动喷射沉积微3D打印实现任意形状导电图案的灵活制造,并结合电镀的体成型特点实现高性能复合金属天线的快速制造。通过实验揭示了打印、电镀工艺参数对金属网格精度和质量的影响及规律。基于提出的方法及优化的工艺参数,设计并制造了中心频率2.45 GHz的透明微带天线,线宽20 μm,周期500 μm,方阻0.29 Ω/sq,透光率78%,实现了2.24 dB的峰值增益和38.26%的辐射效率。结果表明,该方法通过成型银/铜/镍结构,克服了传统工艺制造的金属网格透明天线方阻高、增益和辐射效率低的问题,克服了制造存在的成本高、效率低(如光刻)或分辨率低(如喷墨打印)的问题,在高性能透明天线快速迭代开发上具有显著优势,具有工业化应用前景。

关键词: 透明天线, 金属网格, 电场驱动微3D打印, 增材制造

Abstract: Transparent antenna using metal mesh has been applied in various fields such as 5G/6G communication, intelligent driving, wearable electronics, and more. With the rapid development of communication technology, the iteration and upgrade speed of transparent antennas has accelerated. Currently, the low-cost, fast, and flexible manufacturing of high-performance metal-grid transparent antennas is the biggest technical bottleneck that restricts their product design, performance verification, and commercial application. In response to this challenging issue, a silver/copper/nickel-based composite metal-grid transparent antenna is proposed, which has the advantages of high conductivity and low conductor loss. Additionally, a composite additive manufacturing method based on electric-field-driven(EFD) micro 3D printing to achieve flexible and rapid manufacturing of multi-material composite metal-grid microstructures is introduced. It enables the flexible fabrication of conductive patterns of arbitrary shapes through EFD microscale 3D printing and combines the volume forming characteristics of electroplating to achieve the rapid manufacturing of high-performance composite metal antennas. Through experiments, the effects of printing and plating process parameters on the precision and quality of formed metal mesh and their patterns were revealed. Based on the proposed method and the optimized process parameters, a transparent microstrip antenna with a center frequency of 2.45 GHz is designed and fabricated with a line width of 20 μm, a period of 500 μm, a square resistance of 0.29 Ω/sq, a transmittance of 78%, and a peak gain of 2.24 dB with an radiation efficiency of 38.26%. The results show that this method overcomes the problems of high square resistance, low gain and radiation efficiency of metal-grid transparent antenna fabricated by conventional processes by forming silver/copper/nickel structures. Moreover, it overcomes the drawbacks of high cost, low efficiency (such as photolithography) and low resolution (such as inkjet printing), and it demonstrates significant advantages in the rapid development of high-performance transparent antennas, showing promising prospects for industrial applications.

Key words: transparent antenna, metal mesh, electric-field-driven micro 3D printing, additive manufacturing

中图分类号: