• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (3): 52-66.doi: 10.3901/JME.2025.03.052

• 特邀专栏:人机联合认知赋能的高端装备设计、制造与运维 • 上一篇    

扫码分享

基于数字孪生和深度迁移学习的电主轴热误差建模方法

马帅1, 冷杰武1, 陈祝云2, 李巍华2, 李波3,4, 刘强1   

  1. 1. 广东工业大学省部共建精密电子制造技术与装备国家重点实验室 广州 510006;
    2. 华南理工大学机械与汽车工程学院 广州 510640;
    3. 湖北文理学院机械工程学院 襄阳 441053;
    4. 襄阳华中科技大学先进制造工程研究院 襄阳 441106
  • 收稿日期:2024-02-21 修回日期:2024-08-04 发布日期:2025-03-12
  • 作者简介:马帅,男,1996年出生,博士研究生。主要研究方向为深度迁移学习和数字孪生。E-mail:isms_edu@163.com;陈祝云,男,1990年出生,博士,副研究员。主要研究方向为机械信号处理,数字孪生,装备智能运维。E-mail:mezychen@scut.edu.cn;刘强(通信作者),男,1978年出生,博士,教授,博士研究生导师。主要研究方向柔性产线变型设计,智能制造关键技术。E-mail:liuqiang@gdut.edu.cn
  • 基金资助:
    国家自然科学基金(52205101)、湖北省科技重大专项(2021AA003)、广东省基础与应用基础研究基金(2021A1515110708、202201010615)和广州市基础与应用基础研究基金资助项目。

Thermal Error Modeling Method towards Electric Spindles Based on Digital Twin and Deep Transfer Learning

MA Shuai1, LENG Jiewu1, CHEN Zhuyun2, LI Weihua2, LI Bo3,4, LIU Qiang1   

  1. 1. State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006;
    2. School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640;
    3. School of Mechanical Engineering, Hubei University of Arts and Sciences, Xiangyang 441053;
    4. XY-HUST Advanced Manufacturing Engineering Research Institute, Xiangyang 441106
  • Received:2024-02-21 Revised:2024-08-04 Published:2025-03-12

摘要: 热误差是电主轴系统误差的主要来源之一,热误差建模是提高系统可靠性的重要手段。电主轴装载刀具加工时,需要在多个方向上运动,导致实时测量困难,难以采集足够的热误差样本。不同工况下的数据分布差异较大,在某一工况下训练的热误差预测模型难以在其他工况下取得满意的预测精度。针对上述问题,提出了一种基于数字孪生和深度迁移学习的电主轴热误差建模方法。首先,建立电主轴系统热行为数字孪生模型,模拟出不同工况下的温度场和热变形数据,缓解实际场景中热误差样本缺失的限制。其次,开发基于领域对抗机制的卷积双向长短期记忆网络,数字孪生模型生成的虚拟数据用作源域,真实数据作为目标域,不同尺度的卷积层构成特征提取器,分别提取源域和目标域温度数据的空间特征,处理多维温度特征的共线性问题。构建双向长短期记忆网络作为预测器,处理温度与热误差的时序关系并输出预测值。同时,结合领域适配的对抗训练技术,利用域判别器混淆两域特征,最小化两域数据分布,提高模型的泛化能力。最后,搭建多源数据协同采集平台,获取不同工况下的真实数据,通过不同迁移任务验证,结果表明:在热误差标签样本缺失的情况下,该方法成功实现热误差建模,具备较好的预测性能。

关键词: 电主轴, 热误差建模, 数字孪生, 深度迁移学习, 领域适配

Abstract: Thermal error is one of the main sources of electric spindle system errors, and thermal error modeling is an important means to improve system reliability. In machining scenarios where the electric spindle is loaded with tools, it needs to move in multiple directions, which makes real-time measurement difficult and difficult to collect sufficient thermal error samples. Furthermore, the data distribution under different working conditions presents large discrepancies, and a well-trained model under one working condition failed to obtain satisfactory prediction accuracy when applied to another working condition. To address these issues, a thermal error modeling approach based on digital twins and deep transfer learning is proposed. Firstly, a digital twin model of the thermal behavior of the electric spindle system is established, where the temperature fields and thermal deformation data under different working conditions can be simulated to alleviate the limitation of the scarcity of the thermal error samples in real scenarios. Secondly, a convolutional bidirectional long short-term memory network based on the domain adversarial mechanism is developed. The virtual data generated by the digital twin model is used as the source domain, and the real data is used as the target domain. Convolutional layers of different scales are used as the feature extractor to extract the spatial features of the temperature data from both the source and target domains so as to address the collinearity issue of multi-dimensional temperature features. The bidirectional long short-term memory network is constructed as a predictor to process the time-series relationship between temperature and thermal error and output predictions. Additionally, the adversarial training technique of domain adaptation is employed to confuse the two domain features and minimize the distribution discrepancies between both domains, thereby improving the model's generalization ability. Finally, a multi-source data collaborative collection platform is established to obtain real data under variable working conditions. Different transfer tasks are constructed to validate the proposed method and the results showed the proposed method successfully achieves thermal error modeling in the absence of labeled thermal error samples and exhibits good prediction performance.

Key words: electric spindles, thermal error modeling, digital twin, deep transfer learning, domain adaptation

中图分类号: