• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (14): 150-165.doi: 10.3901/JME.2025.14.150

• 仪器科学与技术 • 上一篇    

扫码分享

基于自适应卷积和潜在表征的航天器管路位姿估计方法

胡佳1, 刘检华1, 刘少丽1, 刘金山2, 王家修2, 孙连胜2   

  1. 1. 北京理工大学数字化制造研究所 北京 100081;
    2. 北京卫星制造厂有限公司 北京 100094
  • 收稿日期:2024-11-06 修回日期:2025-03-03 发布日期:2025-08-25
  • 作者简介:胡佳,女,1996年出生,博士研究生。主要研究方向为机器视觉、位姿估计和目标检测。E-mail:hujia4649@163.com;刘检华,男,1977年出生,博士,教授,博士研究生导师。主要研究方向为数字化制造、精密装配与检测技术。E-mail:jeffliu@bit.edu.cn;刘少丽(通信作者),女,1984年出生,博士,教授,博士研究生导师。主要研究方向为机器视觉、摄影测量、虚拟装配和深度学习。E-mail:liushaoli@bit.edu.cn
  • 基金资助:
    民用航天资助项目(D030202)。

Pose Estimation Method for Spacecraft Pipe Based on Adaptive Convolution and Latent Representation

HU Jia1, LIU Jianhua1, LIU Shaoli1, LIU Jinshan2, WANG Jiaxiu2, SUN Liansheng2   

  1. 1. Institute of Digital Manufacturing, Beijing Institute of Technology, Beijing 100081;
    2. Beijing Spacecraft Manufacturing Co., Ltd., Beijing 100094
  • Received:2024-11-06 Revised:2025-03-03 Published:2025-08-25

摘要: 为保证航天器中管路系统装配的高精度、高可靠性和高效率,精确的目标检测和位姿估计是实现管路系统自动化装配的根本前提。然而,管路无纹理且形状复杂,易受光照、遮挡影响,传统基于纹理和简单几何特征的方法精度低。为解决该问题,提出一种基于自适应卷积和潜在表征的航天器管路位姿估计方法。首先,利用域随机化生成丰富多样且真实的合成数据,有效解决管路大规模数据集获取困难和标注耗时费力的问题。然后,针对管路形状复杂导致的分割精度低的问题,提出基于自适应卷积的管路实例分割网络,根据管路的复杂几何形状进行动态调整,更好地捕捉局部特征和空间关系,并结合结构化剪枝方法优化网络结构,有效提高管路分割的准确与效率。最后,针对传统位姿特征表达有限、容易受到环境变化影响的问题,设计仅对位姿变换敏感而对其他因素鲁棒的潜在位姿表征,融合监督学习和自监督学习机制完成管路位姿的初始估计,并进一步采用基于边缘特征的位姿优化算法提高位姿估计精度。试验结果显示,对比现有的位姿估计方法,所提出的方法能实现更精确的管路分割与位姿估计,分割准确率为99.2%,速度为32.8 帧/s,位姿精度为2.445 mm和1.074°,满足管路自动化装配中目标检测和位姿估计的要求。

关键词: 位姿估计, 实例分割, 域随机化, 自适应卷积, 潜在位姿特征

Abstract: To ensure high precision, reliability and efficiency in spacecraft pipe system assembly, accurate target detection and pose estimation are essential. However, the untextured and complex geometry, as well as susceptibility to light and occlusion, leads to low accuracy of traditional texture- and geometry-based methods. To solve these challenges, a novel pipe pose estimation method based on adaptive convolution and latent representation is proposed. Firstly, diverse and realistic synthetic datasets are generated using domain random, mitigating challenges in large-scale data acquisition and annotation. Then, to address the problem of low segmentation accuracy due to the complex geometry of pipes, an adaptive convolution-based pipe instance segmentation network is proposed, dynamically adjusting to pipe complex geometry to better capture key features and spatial relationships. Structured pruning further optimizes network efficiency and segmentation accuracy. Finally, to address the problem that traditional positional features are limited in expression and susceptible to environmental changes, a novel latent pose representation is designed, which is only sensitive to pose transformation but robust to other factors. Supervised and self-supervised learning are integrated for initial pose estimation, followed by an edge feature-based optimization algorithm to enhance accuracy. Experimental results show that compared with the existing pose estimation methods, our proposed methods achieve more accurate pipe segmentation and pose estimation, with a segmentation accuracy of 99.2%, a speed of 32.8 FPS, and pose accuracies of 2.445 mm and 1.074°, which meets the requirements of target detection and pose estimation in automated pipe assembly.

Key words: pose estimation, instance segmentation, domain randomization, adaptive convolution, latent pose representation

中图分类号: