• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2024, Vol. 60 ›› Issue (22): 302-310.doi: 10.3901/JME.2024.22.302

• 运载工程 • 上一篇    下一篇

扫码分享

基于图像和点云实例匹配的智能车目标检测和跟踪

李尚杰, 殷国栋, 耿可可, 刘帅鹏   

  1. 东南大学机械工程学院 南京 211189
  • 收稿日期:2024-01-21 修回日期:2024-07-06 出版日期:2024-11-20 发布日期:2025-01-02
  • 作者简介:李尚杰,男,1998年出生。主要研究方向为智能车环境感知、目标检测与跟踪、多传感器融合。E-mail:shangjie-li@seu.edu.cn;殷国栋(通信作者),男,1976年出生,博士,教授,博士研究生导师。主要研究方向为智能网联汽车、无人驾驶与智能辅助驾驶系统、车路协同、新能源汽车控制系统、车辆动力学及其控制等。E-mail:ygd@seu.edu.cn
  • 基金资助:
    长三角科技创新体联合攻关(2023CSJGG1600)、国家自然科学基金(52272414)和国家重点研发计划(2023YFD2000303)资助项目。

Object Detection and Tracking Based on Image and Point Clouds Instance Matching for Intelligent Vehicles

LI Shangjie, YIN Guodong, GENG Keke, LIU Shuaipeng   

  1. School of Mechanical Engineering, Southeast University, Nanjing 211189
  • Received:2024-01-21 Revised:2024-07-06 Online:2024-11-20 Published:2025-01-02
  • About author:10.3901/JME.2024.22.302

摘要: 针对智能车的环境感知任务,为了结合相机图像中丰富的语义信息与激光雷达点云中准确的位置信息,提出一种基于图像和点云实例匹配的融合检测方法。通过实例分割网络预测图像中目标的实例掩膜,通过透视投影变换将点云投影至图像平面,根据每个目标的实例掩膜提取属于该目标的点云,然后利用聚类算法去除点云中的噪声,并利用凸包轮廓逼近算法拟合点云的三维轮廓,实现对目标的融合检测。在所提出的融合检测方法的基础上,设计跟踪门实现多目标的数据关联与管理,基于卡尔曼滤波对目标进行跟踪并估计各目标的运动状态。试验结果表明,该方法能够有效地对图像数据和点云数据进行信息融合,从而准确快速地对目标的位置、尺寸、方向角进行拟合并对目标的速度进行估计,且在不同试验场景中表现出鲁棒性。

关键词: 智能车, 目标检测, 目标跟踪, 传感器融合, 实例分割, 透视投影

Abstract: In the environment perception task of intelligent vehicles, in order to combine the rich semantic information in the camera image with the accurate spatial information in the lidar point clouds, a fusion detection method based on image and point clouds instance matching is proposed. To achieve the fusion detection, the instance masks of the targets in the image are predicted by the instance segmentation network, the point clouds are projected to the image plane through perspective projection transformation, the point clouds belonging to the target are extracted according to the instance mask of each target, and then the clustering algorithm is used to remove the noise, and the convex hull approximating algorithm is used to fit the 3D bounding box of the target. Based on the fusion detection method, a gate is designed to realize multi-target data association and management, and the Kalman filter is used to track the target and estimate the motion state of the target. The experimental results show that the method can effectively fuse the information from image data and point clouds data, accurately and quickly fit the position, size, and direction of the target and estimate the speed of the target, and show robustness in different experimental scenarios.

Key words: intelligent vehicle, object detection, object tracking, sensor fusion, instance segmentation, perspective projection

中图分类号: