• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2020, Vol. 56 ›› Issue (12): 165-173.doi: 10.3901/JME.2020.12.165

• 运载工程 • 上一篇    下一篇

扫码分享

基于信息融合的城市自主车辆实时目标识别

薛培林1, 吴愿1, 殷国栋1, 刘帅鹏1, 林乙蘅2, 黄文涵1, 张云3   

  1. 1. 东南大学机械工程学院 南京 211189;
    2. 陆军特种作战学院 桂林 541002;
    3. 福特汽车工程研究(南京)有限公司 南京 211100
  • 收稿日期:2019-11-05 修回日期:2020-03-05 出版日期:2020-06-20 发布日期:2020-07-14
  • 通讯作者: 殷国栋(通信作者),男,1976年出生,博士,教授,博士研究生导师。主要研究方向为先进电动汽车、车辆系统动力学与控制、智能无人汽车、智能网联汽车。E-mail:ygd@seu.edu.cn
  • 作者简介:薛培林,男,1995年出生。主要研究方向为无人驾驶系统感知技术。E-mail:220170269@seu.edu.cn
  • 基金资助:
    国家重点研发计划(2016YFD0700905)、国家自然科学基金(51975118,U1664258)、江苏省重点研发计划(BE2019004-2)和江苏省成果转化项目(BA2018023)资助项目。

Real-time Target Recognition for Urban Autonomous Vehicles Based on Information Fusion

XUE Peilin1, WU Yuan1, YIN Guodong1, LIU Shuaipeng1, LIN Yiheng2, HUANG Wenhan1, ZHANG Yun3   

  1. 1. School of Mechanical Engineering, Southeast University, Nanjing 211189;
    2. The Army Special Operations Academy, Guilin 541002;
    3. Ford Motor Research & Engineering(Nanjing) Co., Ltd., Nanjing 211100
  • Received:2019-11-05 Revised:2020-03-05 Online:2020-06-20 Published:2020-07-14

摘要: 针对单一传感器感知维度不足、实时性差的问题,提出一种激光雷达与相机融合的城市自主车辆实时目标识别方法。建立两传感器间的坐标变换模型,实现两传感器的像素级匹配。改进yolov3-tiny算法,提高目标检测准确率。对激光雷达点进行体素网格滤波,根据点云坡度进行地面分割。建立聚类半径与距离作用模型,对非地面点云进行聚类。引入图像中包络的思想,获取目标三维边界框以及位姿信息;将视觉目标特征与激光雷达目标特征融合。试验结果表明,改进的yolov3-tiny算法对于城市密集目标具有更高的识别率,雷达算法能够完整的完成三维目标检测以及位姿估计,融合识别系统在准确率、实时性方面达到实际行驶要求。

关键词: yolo, 聚类, 位姿估计, 激光雷达, 视觉, 信息融合

Abstract: Aiming at the problem that the single sensor has insufficient sensing dimensions and poor real-time performance, a real-time target recognition method for urban autonomous vehicles based on the fusion of lidar and camera is proposed. To achieve pixel-level matching of the two sensors, a coordinate transformation model between the two sensors is established; the yolov3-tiny algorithm is improved to increase the accuracy of target detection. Voxel grid filtering was performed on the lidar points, the ground is filtered according to the lidar point slope; the model of clustering radius and distance is established, and non-ground point clouds are clustered; the idea of envelope in images is introduced to obtain the 3D bounding box and pose information of the target; the visual target features are fused with the lidar target features. The experimental results show that the improved yolov3-tiny algorithm has a higher recognition rate for dense urban targets. The lidar algorithm can complete three-dimensional target detection and pose estimation. The fusion recognition system meets the actual driving requirements in terms of accuracy and real-time performance.

Key words: yolo, cluster, pose estimation, lidar, vision, information fusion

中图分类号: