• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (3): 130-141.doi: 10.3901/JME.2025.03.130

• 特邀专栏:人机联合认知赋能的高端装备设计、制造与运维 • 上一篇    

扫码分享

基于大语言模型和机器视觉的智能制造系统人机自主协同作业方法

黄思翰1,2, 陈建鹏1, 徐哲1, 阎艳1,2, 王国新1,2   

  1. 1. 北京理工大学机械与车辆学院 北京 100081;
    2. 北京理工大学工业知识与数据融合应用工信部重点实验室 北京 100081
  • 收稿日期:2024-07-04 修回日期:2024-11-26 发布日期:2025-03-12
  • 作者简介:黄思翰(通信作者),男,1991年出生,博士,特聘研究员,博士研究生导师。主要研究方向为机器人化智能制造、数字孪生和人工智能。E-mail:hsh@bit.edu.cn;陈建鹏,男,2000年出生。主要研究方向为人机协同作业。E-mail:2393225727@qq.com;徐哲,男,2002年出生。主要研究方向为灵巧手调控。E-mail:lution1019@126.com;阎艳,女,1967年出生,博士,教授,博士研究生导师。主要研究方向为知识工程、智能设计、智能制造。E-mail:yanyan331@bit.edu.cn;王国新,男,1977年出生,博士,教授,博士研究生导师。主要研究方向为知识工程、系统工程、智能制造。E-mail:wangguoxin@bit.edu.cn
  • 基金资助:
    北京市自然科学基金重点研究专题(L243009)、国家自然科学基金(52405530)和北京理工大学青年教师学术启动计划资助项目。

Human-robot Autonomous Collaboration Method of Smart Manufacturing Systems Based on Large Language Model and Machine Vision

HUANG Sihan1,2, CHEN Jianpeng1, XU Zhe1, YAN Yan1,2, WANG Guoxin1,2   

  1. 1. School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081;
    2. Key Laboratory of Industry Knowledge & Data Fusion Technology and Application, Ministry of Industry and Information Technology, Beijing Institute of Technology, Beijing 100081
  • Received:2024-07-04 Revised:2024-11-26 Published:2025-03-12

摘要: 工业4.0阶段,人工智能、大数据、物联网等新兴技术层出不穷,加速推动制造业转型升级,在这个过程中,各类机器人扮演着越来越重要的角色,也为智能制造高质量发展夯实了基础。随着工业5.0的提出,以人为中心的理念逐渐深入人心,催生了人本智造这一新兴领域。人与机器人在智能制造系统中的界限变得越来越不明显,人与机器人自主协同作业研究成为了热点。因此,提出基于大语言模型和机器视觉的智能制造系统人机自主协同作业方法,借助机器视觉和大语言模型的优势提高智能制造系统中人机协同作业的智能化水平。首先,融合机器视觉和深度学习对智能制造系统中人机协同作业过程进行动态精准感知,通过融合YOLO算法和迁移学习来识别作业状态,利用长短期记忆网络和注意力机制准确追踪操作工动作。然后,面向人机协同作业对大语言模型进行微调,建立基于微调大模型的人机协同作业决策框架,为提供机器人自主配合操作工完成动态作业的任务指令,形成人机自主协同作业闭环。最后,通过一个减速器装配案例验证了该方法的有效性。

关键词: 工业5.0, 人本智造, 智能制造系统, 大语言模型, 机器视觉, 人机自主协同作业, 深度学习

Abstract: In Industry 4.0, the emerging technologies such as artificial intelligence, big data, and the Internet of Things are appearing endlessly, accelerating the transformation and upgrading of the manufacturing industry. In this process, industry robot plays an increasingly important role, which also lays a solid foundation for the high-quality development of intelligent/smart manufacturing. With the proposal of Industry 5.0, human centricity concept becomes popular, which has given birth to the emerging field of human-centric smart manufacturing. The boundary between human and robot in the smart manufacturing systems gets blurred, and the research on human-robot autonomous collaboration has attracted more and more attentions. Therefore, proposes a human-robot autonomous collaboration method based on large language model and machine vision to improve the intelligence level of human-robot collaboration. First, dynamic perception of the working process for human-robot collaboration is carried out by the fusion of machine vision and deep learning, where the fusion of YOLO and transfer learning is adopted to accurately identify the operate progress and the long short-term memory network and attention mechanism are combined to recognize the actions of operator. Second, the large language model is fine-tuned for human-robot collaboration to realize autonomous operating decision for smart robot during the dynamic work process. Finally, a reducer assembly case is used to verify the effectiveness of the proposed method.

Key words: Industry 5.0, human-centric smart manufacturing, smart manufacturing systems, large language model, machine vision, human-robot autonomous collaboration, deep learning

中图分类号: