• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2024, Vol. 60 ›› Issue (23): 114-129.doi: 10.3901/JME.2024.23.114

• 机器人及机构学 • 上一篇    下一篇

扫码分享

高速大承载Schönflies并联机构动力学建模、性能分析及控制策略

梁栋1,2, 张珺鹏1, 姚福林1,2, 宋轶民3, 孙涛3   

  1. 1. 天津工业大学机械工程学院 天津 300387;
    2. 天津市现代机电装备技术重点实验室 天津 300387;
    3. 天津大学机构理论与装备设计教育部重点实验室 天津 300350
  • 收稿日期:2023-10-15 修回日期:2024-05-20 出版日期:2024-12-05 发布日期:2025-01-23
  • 作者简介:梁栋,男,1985年出生,博士,副教授,博士研究生导师。主要研究方向为机构学与机器人学、多体系统动力学及控制。E-mail:dongliang@tiangong.edu.cn;张珺鹏,男,1998年生,硕士研究生。主要研究方向为机器人机构运动学与动力学。E-mail:2230050682@tiangong.edu.cn;姚福林,男,1986年出生,博士,讲师,硕士研究生导师。主要研究方向为机器人学。E-mail:yaofulin111@163.com;宋轶民(通信作者),男,1971年出生,博士,教授,博士研究生导师。主要研究方向为机器人机构学、机械动力学与机械传动。E-mail:ymsong@tju.edu.cn;孙涛,男,1983年出生,博士,教授,博士研究生导师。主要研究方向为机构学与机器人学。E-mail:stao@tju.edu.cn
  • 基金资助:
    国家自然科学基金(52175243,52275027)资助项目。

Dynamic Modeling, Performance Analysis and Control Strategy for a Schönflies Parallel Mechanism with High-speed and Large-load Capacity

LIANG Dong1,2, ZHANG Junpeng1, YAO Fulin1,2, SONG Yimin3, SUN Tao3   

  1. 1. School of Mechanical Engineering, Tiangong University, Tianjin 300387;
    2. Tianjin Key Laboratory of Advanced Mechatronics Equipment Technology, Tianjin 300387;
    3. Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin 300350
  • Received:2023-10-15 Revised:2024-05-20 Online:2024-12-05 Published:2025-01-23

摘要: 面向纺织、食品、物流运输等行业中的高速及大承载作业需求,研究一类具有双闭环子结构稳定支链的Schönflies并联机构完备动力学建模、性能分析及控制问题。首先,借助线图法直观简洁表征支链自由度和约束空间,进而揭示出该机构动平台具有三平动和一转动的运动特性。在偏速度分析前提下,基于Kane方程建立机构的精细化多刚体动力学模型及其规范式,为后续性能评价及控制策略开发奠定基础。将任务空间动力学模型转化至关节空间,进而定义关节映射惯性指标和关节空间惯性变化系数指标对机构进行动力学性能分析。开发多体物理仿真模型,验证动力学模型的准确性,进而在获得关节约束力基础上引入摩擦,求解出驱动关节的库伦-粘性摩擦力矩。为实现精确运动控制,提出一种模糊非线性计算力矩控制策略,结合多体物理仿真模型,开展面向作业任务的控制仿真试验,多控制器试验对比结果表明,所提控制策略能有效抑制摩擦力矩及不确定因素影响,实现高精度轨迹跟踪/定位。

关键词: 高速大承载并联机构, Kane方程, 多体仿真试验, 库伦-粘性摩擦, 模糊非线性计算力矩控制

Abstract: Facing the increasing demand for high-speed and large-load operation in textile, food and logistics transportation, the complete dynamics modeling, performance analysis and control issues of a type of Schönflies parallel mechanism are investigated. First, the degrees of freedom (DOFs) and constraint space of the chains are characterized visually by means of the line atlas method, and then it is demonstrated that the moving platform of the mechanism has three translational and one rotational DOFs. On the basis of partial velocity analysis, the refined rigid-body dynamics model is established via Kane’s formulation, which is organized as the normalized form to facilitate the performance evaluation and control strategy design. The dynamics model within task space is transformed into the one within joint space, and the dynamic performance of the mechanism is analyzed by the joint-reflected inertia (JRI) index and the coefficient of variation of joint-space inertia (CVI) index. A multi-body physical simulation model is developed to verify the validity of the dynamics model, and then the friction effect is considered based on the joint constraint forces to calculate the Coulomb-viscous friction moments of active joints. To realize the accurate motion control, one kind of fuzzy nonlinear computed torque control (FNCTC) strategy is proposed, and the task oriented control simulation experiment is conducted. The comparative results under different controller suggest that the FNCTC can effectively compensate the effect of friction moments and uncertainty so that the high precision trajectory tracking and positioning can be guaranteed.

Key words: high-speed large-load parallel mechanism, Kane equation, multi-body simulation test, Cullen-viscous friction, fuzzy nonlinear computed torque control

中图分类号: