机械工程学报 ›› 2024, Vol. 60 ›› Issue (13): 154-172.doi: 10.3901/JME.2024.13.154
张显程1, 谷行行1, 刘宇2, 王润梓1,3, 宋鲁凯4, 谢里阳5, 赵丙峰5, 夏侯唐凡2, 李勇1, 孙莉1, 温建锋1, 涂善东1
收稿日期:
2023-09-18
修回日期:
2024-04-03
出版日期:
2024-07-05
发布日期:
2024-08-24
作者简介:
张显程,男,1979年出生,博士,教授,博士研究生导师。主要研究方向为机械装备寿命保障理论与技术。E-mail:xczhang@ecust.edu.cn
基金资助:
ZHANG Xiancheng1, GU Hanghang1, LIU Yu2, WANG Runzi1,3, SONG Lukai4, XIE Liyang5, ZHAO Bingfeng5, XIAHOU Tangfan2, LI Yong1, SUN Li1, WEN Jianfeng1, TU Shantung1
Received:
2023-09-18
Revised:
2024-04-03
Online:
2024-07-05
Published:
2024-08-24
摘要: 在航空航天、核电、能源化工等重要工程领域,高温装备服役于极端恶劣的工作环境,可靠性问题日益突出,如何确保其长寿命高可靠性服役是研究热点问题。一方面,高温复杂装备由众多零部件构成,部件失效模式多样以及不同部件失效模式耦合相关给可靠性评估带来极大的困难;另一方面,装备服役过程中载荷工况复杂多变,关键高温部件在多损伤交互作用下的性能退化行为具有明显不确定性,造成装备运维精细化管理难度大。基于工程损伤理论,围绕高温装备可靠性评估与运维管理两个方面进行了深入探讨,总结和梳理了高温装备可靠性研究的分析流程、主要研究手段、当前研究成果及需要解决的问题。
中图分类号:
张显程, 谷行行, 刘宇, 王润梓, 宋鲁凯, 谢里阳, 赵丙峰, 夏侯唐凡, 李勇, 孙莉, 温建锋, 涂善东. 基于工程损伤理论的高温装备可靠性评估与运维管理[J]. 机械工程学报, 2024, 60(13): 154-172.
ZHANG Xiancheng, GU Hanghang, LIU Yu, WANG Runzi, SONG Lukai, XIE Liyang, ZHAO Bingfeng, XIAHOU Tangfan, LI Yong, SUN Li, WEN Jianfeng, TU Shantung. Engineering Damage Theory-based Reliability Assessment and Management of High-temperature Equipment[J]. Journal of Mechanical Engineering, 2024, 60(13): 154-172.
[1] LEFTON S, EDMONDS J, FOULDS J, et al. Effects of flexible operation on turbines and generators [R]. Electric Power Research Institute, Palo Alto, CA, Tech Rep, 2004, 1008351. [2] KUMAR S, ROY N, GANGULI R. Monitoring low cycle fatigue damage in turbine blade using vibration characteristics[J]. Mechanical Systems and Signal Processing, 2007, 21(1):480-501. [3] SAIDUR R, ABDELAZIZ E, DEMIRBAS A, et al. A review on biomass as a fuel for boilers[J]. Renewable and Sustainable Energy Reviews, 2011, 15(5):2262-2289. [4] ZHU S P, FOLETTI S, BERETTA S. Probabilistic framework for multiaxial LCF assessment under material variability[J]. International Journal of Fatigue, 2017, 103:371-385. [5] ZHU S P, LIU Q, ZHOU J, et al. Fatigue reliability assessment of turbine discs under multi‐source uncertainties[J]. Fatigue & Fracture of Engineering Materials & Structures, 2018, 41(6). [6] THAPA M, MISSOUM S. Uncertainty quantification and global sensitivity analysis of composite wind turbine blades[J]. Reliability Engineering & System Safety, 2022, 222:108354. [7] LI X Y, CHEN W B, KANG R. Performance margin-based reliability analysis for aircraft lock mechanism considering multi-source uncertainties and wear[J]. Reliability Engineering & System Safety, 2021, 205:107234. [8] 束国刚, 陈坚, 张晓毅, 等. 重型燃气轮机结构完整性分析[J]. 动力工程学报, 2022, 42(12):1213-1222, 71. SHU Guogang, CHEN Jian, ZHANG Xiaoyi, et al. Mechanical integrity anaIysjs of heavy-duty gas turbines[J]. Journal of Chinese Society of Power Engineering, 2022, 42(12):1213-1222,71. [9] LEMAITRE J, DESMORAT R. Engineering damage mechanics:ductile, creep, fatigue and brittle failures [M]. Springer Science & Business Media, 2006. [10] KACHANOV L. Rupture time under creep conditions[J]. International Journal of Fracture, 1999, 97(1-4):11-18. [11] RABOTNOV Y N. Creep rupture; proceedings of the applied mechanics:Proceedings of the Twelfth International Congress of Applied Mechanics [C]// Stanford University, August 26–31, 1968. [12] RABOTNOV Y N. A model of an elastic-plastic medium with delayed yield[J]. Journal of Applied Mechanics and Technical Physics, 1968, 9(3):265-269. [13] BONORA N, GENTILE D, PIRONDI A, et al. Ductile damage evolution under triaxial state of stress:theory and experiments[J]. International Journal of Plasticity, 2005, 21(5):981-1007. [14] GOVINDJEE S, KAY G J, SIMO J C. Anisotropic modelling and numerical simulation of brittle damage in concrete[J]. International Journal for Numerical Methods in Engineering, 1995, 38(21):3611-3633. [15] DRORY M, EVANS A. Effects of Voids at Three‐Grain Junctions on Sintering and Creep Damage[J]. Journal of the American Ceramic Society, 1984, 67(11):727-731. [16] BLUMENTHAL W, EVANS A G. High‐Temperature Failure of Polycrystalline Alumina:II, Creep crack growth and blunting[J]. Journal of the American Ceramic Society, 1984, 67(11):751-759. [17] MARCO S, STARKEY W. A concept of fatigue damage[J]. Transactions of the American Society of Mechanical Engineers, 1954, 76(4):627-632. [18] XIAO Y C, LI S, GAO Z. A continuum damage mechanics model for high cycle fatigue[J]. International Journal of Fatigue, 1998, 20(7):503-508. [19] SKELTON R, GANDY D. Creep–fatigue damage accumulation and interaction diagram based on metallographic interpretation of mechanisms[J]. Materials at High Temperatures, 2008, 25(1):27-54. [20] CHABOCHE J L. Continuous damage mechanics—a tool to describe phenomena before crack initiation[J]. Nuclear Engineering and Design, 1981, 64(2):233-247. [21] SUN L, ZHANG X C, WANG R Z, et al. Evaluation of fatigue and creep-fatigue damage levels on the basis of engineering damage mechanics approach[J]. International Journal of Fatigue, 2023, 166:107277. [22] WANG R Z, ZHANG X C, TU S T, et al. A modified strain energy density exhaustion model for creep–fatigue life prediction[J]. International Journal of Fatigue, 2016, 90:12-22. [23] WANG R Z, ZHU S P, WANG J, et al. High temperature fatigue and creep-fatigue behaviors in a Ni-based superalloy:Damage mechanisms and life assessment[J]. International Journal of Fatigue, 2019, 118:8-21. [24] GU H H, WANG R Z, TANG M J, et al. Creep-fatigue reliability assessment for high-temperature components fusing on-line monitoring data and physics-of-failure by engineering damage mechanics approach[J]. International Journal of Fatigue, 2023, 169:107481. [25] 汪鹏. 复杂结构系统的不确定性量化和传递方法研究及应用[D]. 成都:电子科技大学, 2016. WANG Peng. Uncertainty quantification and propagation method for the complex structural system and its application [D]. Chengdu:University of Electronic Science and Technology of China, 2016. [26] OH B. The exponential law of endurance tests [C]//Proceedings of the Proc Am Soc Test Mater, F, 1910. [27] MANSON S S. Behavior of materials under conditions of thermal stress [M]. National Advisory Committee for Aeronautics, 1953. [28] COFFIN JR L F. A study of the effects of cyclic thermal stresses on a ductile metal[J]. Transactions of the American Society of Mechanical Engineers, 1954, 76(6):931-949. [29] OSTERGREN W. A damage function and associated failure equations for predicting hold time and frequency effects in elevated temperature, low cycle fatigue[J]. Journal of Testing and Evaluation, 1976, 4(5):327-339. [30] ROBINSON E L. Effect of temperature variation on the long-time rupture strength of steels[J]. Transactions of the American Society of Mechanical Engineers, 1952, 74(5):777-780. [31] HALES R. A method of creep damage summation based on accumulated strain for the assessment of creep‐fatigue endurance[J]. Fatigue & Fracture of Engineering Materials & Structures, 1983, 6(2):121-135. [32] TAKAHASHI Y, DOGAN B, GANDY D. Systematic evaluation of creep-fatigue life prediction methods for various alloys[J]. Journal of Pressure Vessel Technology, 2013, 135(6). [33] ANTOLOVICH S D, BAUR R, LIU S. A mechanistically based model for high temperature LCF of Ni base superalloys[J]. Superalloys, 1980, 1980:605-613. [34] WANG R Z, ZHANG X C, GU H H, et al. Oxidation-involved life prediction and damage assessment under generalized creep-fatigue loading conditions based on engineering damage mechanics[J]. Journal of Materials Research and Technology, 2023, 23:114-130. [35] AINSWORTH R. R5:Assessment procedure for the high temperature response of structures[J]. British Energy Generation Ltd, 2003, 3. [36] HOLMSTRöM S. Recommendation for the negligible creep domain for P91[R]. Report EUR, 2016. [37] SKELTON R. The energy density exhaustion method for assessing the creep-fatigue lives of specimens and components[J]. Materials at High Temperatures, 2013, 30(3):183-201. [38] LI K S, WANG R Z, YUAN G J, et al. A crystal plasticity-based approach for creep-fatigue life prediction and damage evaluation in a nickel-based superalloy[J]. International Journal of Fatigue, 2021, 143:106031. [39] 史进渊, 孙庆, 杨宇, 等. 大型汽轮机部件蠕变寿命的设计和评估[J]. 中国电机工程学报, 2002, 22(3):103-107. SHI Jinyuan, SUN Qing, YANG Yu, et al. Design and evaluation of creep life of large turbine components[J]. Proceedings of the CSEE, 2002, 22(3):103-107. [40] FOUCHEREAU R, CELEUX G, PAMPHILE P. Probabilistic modeling of S–N curves[J]. International Journal of Fatigue, 2014, 68:217-23. [41] HOOLE J, SARTOR P, BOOKER J, et al. Systematic statistical characterisation of stress-life datasets using 3-Parameter distributions[J]. International Journal of Fatigue, 2019, 129:105216. [42] KWAK S G, KIM J H. Central limit theorem:the cornerstone of modern statistics[J]. Korean Journal of Anesthesiology, 2017, 70(2):144-156. [43] 贾鹏, 刁飞, 王洪海, 等. 全电式阀门执行器可靠性设计[J]. 机械设计与制造, 2019, (7):29-33, 8. JIA Peng, DIAO Fei, WANG Hongmei, et al. Design of all-electric valve actuator reliability[J]. Machinery Design & Manufacture, 2019, (7):29-33, 8. [44] 史进渊. 大型发电机组可靠性预测方法与应用[J]. 机械工程学报, 2011, 47(18):165-172. SHI Jinyuan. Reliability Prediction methods and application of large capacity generating units[J]. Journal of Mechanical Engineering, 2011, 47(18):165-172. [45] 杜丽, 张晗亮, 黄洪钟, 等. 模糊相似产品法与综合评判法结合的柴油机可靠性预计[J]. 电子科技大学学报, 2010, 39(4):629-633. DU Li, ZHANG Hanliang, HUANG Hongzhong, et al. Combining fuzzy similar product and fuzzy comprehensive evaluation method for reliability prediction of diesel engine[J]. Journal of University of Electronic Science and Technology of China, 2010, 39(4):629-633. [46] ROY C J, OBERKAMPF W L. A comprehensive framework for verification, validation, and uncertainty quantification in scientific computing[J]. Computer Methods in Applied Mechanics and Engineering, 2011, 200(25-28):2131-2144. [47] 朱顺鹏. 高温复杂结构的混合概率故障物理建模与疲劳寿命预测[D]. 成都:电子科技大学, 2011. ZHU Shunpeng. Research on Hybrid Probabilistic Physics of Failure Modeling and Fatigue Life Estimation of High-Temperature Structures [D]. Chengdu:University of Electronic Science and Technology of China, 2011. [48] BOX G E, TIAO G C. Bayesian inference in statistical analysis [M]. John Wiley & Sons, 2011. [49] KIM K, LEE G, PARK K, et al. Adaptive approach for estimation of pipeline corrosion defects via Bayesian inference[J]. Reliability Engineering & System Safety, 2021, 216:107998. [50] ZHU S P, HUANG H Z, PENG W, et al. Probabilistic Physics of Failure-based framework for fatigue life prediction of aircraft gas turbine discs under uncertainty[J]. Reliability Engineering & System Safety, 2016, 146:1-12. [51] 姜潮. 基于区间的不确定性优化理论与算法[D] . 长沙:湖南大学, 2008. JIANG Chao. Uncertainty optimization theory and algorithm based on interval [D]:Changsha:Hunan University, 2008. [52] ZIMMERMANN H J. Fuzzy set theory—and its applications [M]. Springer Science & Business Media, 2011. [53] JIANG C, ZHENG J, HAN X. Probability-interval hybrid uncertainty analysis for structures with both aleatory and epistemic uncertainties:a review[J]. Structural and Multidisciplinary Optimization, 2018, 57(6):2485-2502. [54] ISLAM M S, NEPAL M P, SKITMORE M, et al. Current research trends and application areas of fuzzy and hybrid methods to the risk assessment of construction projects[J]. Advanced Engineering Informatics, 2017, 33:112-131. [55] XIAO M, ZHANG J, GAO L, et al. An efficient Kriging-based subset simulation method for hybrid reliability analysis under random and interval variables with small failure probability[J]. Structural and Multidisciplinary Optimization, 2019, 59:2077-2092. [56] WU M C, XIAHOU T F, CHEN J T, et al. Differentiating effects of input aleatory and epistemic uncertainties on system output:a separating sensitivity analysis approach[J]. Mechanical Systems and Signal Processing, 2022, 181:109421. [57] BJERAGER P. Methods for structural reliability computations[J]. Reliability Problems:General Principles and Applications in Mechanics of Solids and Structures, 1991:89-135. [58] HUANG H Z, AN Z W. A Discrete stress-strength interference model with stress dependent strength[J]. IEEE Transactions on Reliability, 2009, 58(1):118-122. [59] ZHANG J, MA X, ZHAO Y. A stress-strength time-varying correlation interference model for structural reliability analysis using copulas[J]. IEEE Transactions on Reliability, 2017, 66(2):351-365. [60] CHENG H C, HWU F S. Fatigue reliability analysis of composites based on residual strength[J]. Advanced Composite Materials, 2006, 15(4):385-402. [61] 高鹏, 谢里阳. 考虑强度退化的零件及系统可靠性分析[J]. 机械工程学报, 2010, 46(24):162-167. GAO Peng, XIE Liyang. Reliability Analysis of components and system considering degradation of strength[J]. Journal of Mechanical Engineering, 2010, 46(24):162-167. [62] GAO J, AN Z. A new probability model of residual strength of material based on interference theory[J]. International Journal of Fatigue, 2019, 118:202-208. [63] YAO W, HIMMEL N. A new cumulative fatigue damage model for fibre-reinforced plastics[J]. Composites Science and Technology, 2000, 60(1):59-64. [64] WANG R Z, ZHANG X C, GONG J G, et al. Creep-fatigue life prediction and interaction diagram in nickel-based GH4169 superalloy at 650℃ based on cycle-by-cycle concept[J]. International Journal of Fatigue, 2017, 97:114-123. [65] WANG R Z, GUO S J, CHEN H, et al. Multi-axial creep-fatigue life prediction considering history- dependent damage evolution:A new numerical procedure and experimental validation[J]. Journal of the Mechanics and Physics of Solids, 2019, 131:313-336. [66] GU H H, WANG R Z, ZHU S P, et al. Machine learning assisted probabilistic creep-fatigue damage assessment[J]. International Journal of Fatigue, 2022, 156:106677. [67] RATHOD V, YADAV O P, RATHORE A, et al. Probabilistic modeling of fatigue damage accumulation for reliability prediction[J]. International Journal of Quality, Statistics, and Reliability, 2011, 2011:1-10. [68] RACKWITZ R, FLESSLER B. Structural reliability under combined random load sequences[J]. Computers & Structures, 1978, 9(5):489-494. [69] RASHKI M, MIRI M, AZHDARY MOGHADDAM M. A new efficient simulation method to approximate the probability of failure and most probable point[J]. Structural Safety, 2012, 39:22-29. [70] HASOFER A M, LIND N C. Exact and invariant Second-Moment code format[J]. Journal of the Engineering Mechanics Division, 1974, 100(1):111-121. [71] FAURIAT W, GAYTON N. AK-SYS:an adaptation of the AK-MCS method for system reliability[J]. Reliability Engineering & System Safety, 2014, 123:137-144. [72] ZHU S P, LIU Q, PENG W, et al. Computational- experimental approaches for fatigue reliability assessment of turbine bladed disks[J]. International Journal of Mechanical Sciences, 2018, 142-143:502-517. [73] ALIBRANDI U, IMPOLLONIA N, RICCIARDI G. Probabilistic eigenvalue buckling analysis solved through the ratio of polynomial response surface[J]. Computer Methods in Applied Mechanics and Engineering, 2010, 199(9):450-464. [74] ZHAO W, FAN F, WANG W. Non-linear partial least squares response surface method for structural reliability analysis[J]. Reliability Engineering & System Safety, 2017, 161:69-77. [75] SUN Z, WANG J, LI R, et al. LIF:A new Kriging based learning function and its application to structural reliability analysis[J]. Reliability Engineering & System Safety, 2017, 157:152-165. [76] YANG X, LIU Y, MI C, et al. System reliability analysis through active learning Kriging model with truncated candidate region[J]. Reliability Engineering & System Safety, 2018, 169:235-241. [77] ZHANG J, XIAO M, GAO L. An active learning reliability method combining Kriging constructed with exploration and exploitation of failure region and subset simulation[J]. Reliability Engineering & System Safety, 2019, 188:90-102. [78] ROY A, CHAKRABORTY S. Support vector regression based metamodel by sequential adaptive sampling for reliability analysis of structures[J]. Reliability Engineering & System Safety, 2020, 200:106948. [79] DAI H, ZHANG B, WANG W. A multiwavelet support vector regression method for efficient reliability assessment[J]. Reliability Engineering & System Safety, 2015, 136:132-139. [80] BOURINET J M. Rare-event probability estimation with adaptive support vector regression surrogates[J]. Reliability Engineering & System Safety, 2016, 150:210-221. [81] YANG S, JO H, LEE K, et al. Expected system improvement (ESI):A new learning function for system reliability analysis[J]. Reliability Engineering & System Safety, 2022, 222:108449. [82] YANG Y, MA Z, NIE F, et al. Multi-class active learning by uncertainty sampling with diversity maximization[J]. International Journal of Computer Vision, 2015, 113:113-27. [83] XIANG Z, CHEN J, BAO Y, et al. An active learning method combining deep neural network and weighted sampling for structural reliability analysis[J]. Mechanical Systems and Signal Processing, 2020, 140. [84] WANG R Z, GU H H, ZHU S P, et al. A data-driven roadmap for creep-fatigue reliability assessment and its implementation in low-pressure turbine disk at elevated temperatures[J]. Reliability Engineering & System Safety, 2022:108523. [85] WANG R Z, GU H H, LIU Y, et al. Surrogate-modeling-assisted creep-fatigue reliability assessment in a low-pressure turbine disc considering multi-source uncertainty[J]. Reliability Engineering & System Safety, 2023, 240:109550. [86] GU H H, WANG R Z, KUN Z, et al. System-level creep-fatigue reliability evaluation by engineering damage mechanics incorporating cumulative damage-damage threshold interference[J]. International Journal of Fatigue, 2023:107768. [87] FANG G, PAN R, HONG Y. Copula-based reliability analysis of degrading systems with dependent failures[J]. Reliability Engineering & System Safety, 2020, 193:106618. [88] 董颖华, 丁杰, 李红涛, 等. 基于故障树模型的光伏跟踪系统可靠性分析[J]. 电测与仪表, 2016, 53(3):7-11. DONG Yinghua, DING Jie, LI Hongtao, et al. Reliability analysis of PV tracking system based on fault tree model[J]. Electrical Measurement & instrumentation, 2016, 53(3):7-11. [89] SALVADORI G, DE MICHELE C. On the use of copulas in hydrology:theory and practice[J]. Journal of Hydrologic Engineering, 2007, 12(4):369-380. [90] PENG W, LI Y-F, YANG Y-J, et al. Bivariate analysis of incomplete degradation observations based on inverse Gaussian processes and copulas[J]. IEEE Transactions on Reliability, 2016, 65(2):624-639. [91] PENG W, LI Y F, MI J, et al. Reliability of complex systems under dynamic conditions:A Bayesian multivariate degradation perspective[J]. Reliability Engineering & System Safety, 2016, 153:75-87. [92] WANG R, LIU X, HU D, et al. Reliability assessment for system-level turbine disc structure using LRPIM-based surrogate model considering multi-failure modes correlation[J]. Aerospace Science and Technology, 2019, 95:105422. [93] LI X Y, LIU Y, CHEN C J, JIANG T. A copula-based reliability modeling for nonrepairable multi-state k-out-of-n systems with dependent components[J]. IMechE Part O:Journal of Risk and Reliability, 2016, 230(2):133-146. [94] 尹晓伟, 钱文学,谢里阳. 基于贝叶斯网络的系统可靠性共因失效模型[J]. 中国机械工程, 2009, 20(1):90-94. YIN Xiaowei, QIAN Wenxue, XIE Liyang. Common cause failure model of system reliability based on bayesian network[J]. China Mechanical Engineering, 2009, 20(1):90-94. [95] 李懿凡, 钱华明, 黄洪钟, 等. 基于广义连续时间贝叶斯网络的指挥控制网络系统可靠性分析[J]. 系统工程与电子技术, 2022, 44(12):3880-3886. LI Yifan, QIAN Huaming, HUANG Hongzhong, et al. Reliability analysis of command and control network system based on generalized continuous time Bayesian network[J]. Systems Engineering and E1ectronics, 2022, 44(12):3880-3886. [96] XIAHOU T F, ZHENG Y X, LIU Y, et al. Reliability modeling of modular k-out-of-n systems with functional dependency:a case study of radar transmitter systems. Reliability Engineering and System Safety, 2023, 233:109120. [97] JARDINE A K, LIN D, BANJEVIC D. A review on machinery diagnostics and prognostics implementing condition-based maintenance[J]. Mechanical Systems and Signal Processing, 2006, 20(7):1483-1510. [98] LEE J, WU F, ZHAO W, et al. Prognostics and health management design for rotary machinery systems—Reviews, methodology and applications[J]. Mechanical Systems and Signal Processing, 2014, 42(1-2):314-334. [99] VICHARE N, RODGERS P, EVELOY V, et al. In situ temperature measurement of a notebook computer-A case study in health and usage monitoring of electronics[J]. IEEE Transactions on Device and Materials Reliability, 2004, 4(4):658-663. [100] WANG W, SCARF P A, SMITH M. On the application of a model of condition-based maintenance[J]. Journal of the Operational Research Society, 2000, 51(11):1218-1227. [101] YIN S, DING S X, ZHOU D. Diagnosis and prognosis for complicated industrial systems—Part I[J]. IEEE Transactions on Industrial Electronics, 2016, 63(4):2501-2505. [102] KIM N H, AN D, CHOI J H. Prognostics and health management of engineering systems [M]. Switzerland:Springer International Publishing, 2017. [103] PETTIT C, BARKHOUDARIAN S, DAUMANN J A, et al. Reusable rocket engine advanced health management system:Architecture and technology evaluation-summary [C]. proceedings of the 35th Joint Propulsion Conference and Exhibit, F, 1999. [104] MICHAELS J E, MICHAELS T E, COBB A C, et al. Ultrasonic sensing and life prediction for the DARPA structural integrity prognosis system [C]. Proceedings of the AIP Conference Proceedings, F, 2007. [105] INSTRUCTION D. 5000.2, operation of the defense acquisition system [R]. Change, 2003, 1. [106] 金晓航, 王宇, ZHANG Bin. 工业大数据驱动的故障预测与健康管理[J]. 计算机集成制造系统, 2022, 28(5):1314-1336. JIN Xiaohang, WANG Yu, ZHANG Bin. Industrial big data-driven fault prognostics and health management[J]. Computer Integrated Manufacturing Systems, 2022, 28(5):1314-1336. [107] 曹明, 黄金泉, 周健, 等. 民用航空发动机故障诊断与健康管理现状、挑战与机遇Ⅰ:气路、机械和FADEC系统故障诊断与预测[J]. 航空学报, 2022, 43(9):21-33. CAO Ming, HUANG Jinquan, ZHOU Jian, et al. Current status, challenges and opportunities of civil aero-engine diagnosis & health management I::Diagnosis and prognosis of engine gas path, mechanical and FADEC[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9):21-33. [108] 曹明, 王鹏, 左洪福, 等. 民用航空发动机故障诊断与健康管理现状、挑战与机遇Ⅱ::地面综合诊断、寿命管理和智能维护维修决策[J]. 航空学报, 2022, 43(9):34-73. CAO Ming, WANG Peng, ZUO Hongfu, et al. Current status, challenges and opportunities of civil aero-engine diagnosis & health management II::Comprehensive off-ground diagnostics, life management and intelligent condition based MRO[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9):34-73. [109] SI X S, WANG W, HU C H, et al. Remaining useful life estimation–a review on the statistical data driven approaches[J]. European Journal of Operational Research, 2011, 213(1):1-14. [110] SI X S, WANG W, HU C H, et al. A Wiener-process-based degradation model with a recursive filter algorithm for remaining useful life estimation[J]. Mechanical Systems and Signal Processing, 2013, 35(1-2):219-237. [111] CALLAN R, LARDER B, SANDIFORD J. An integrated approach to the development of an intelligent prognostic health management system [C]//Proceedings of the 2006 IEEE Aerospace Conference, F, 2006. [112] PARIS P, ERDOGAN F. A critical analysis of crack propagation laws[J]. Journal of Fluids Engineering, 1963, 85(4):528-533. [113] CUBILLO A, PERINPANAYAGAM S, ESPERON-MIGUEZ M. A review of physics-based models in prognostics:Application to gears and bearings of rotating machinery[J]. Advances in Mechanical Engineering, 2016, 8(8):1687814016664660. [114] RAMASSO E, SAXENA A. Performance benchmarking and analysis of prognostic methods for CMAPSS datasets[J]. International Journal of Prognostics and Health Management, 2014, 5(2):1-15. [115] LI N, GEBRAEEL N, LEI Y, et al. Remaining useful life prediction based on a multi-sensor data fusion model[J]. Reliability Engineering & System Safety, 2021, 208:107249. [116] 任子强, 司小胜, 胡昌华, 等. 融合多传感器数据的发动机剩余寿命预测方法[J]. 航空学报, 2019, 40(12):129-140. REN Ziqiang, SI Xiaosheng, HU Changhua, et al. Remaining using life prediction method for engine combining multi-sensors data[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(12):129-140. [117] 雷亚国, 杨彬, 杜兆钧, 等. 大数据下机械装备故障的深度迁移诊断方法[J]. 机械工程学报, 2019, 55(7):1-8. LEI Yaguo, YANG Bin, DU Zhaojun, et al. Deep transfer diagnosis method for machinery in big data Era[J]. Journal of Mechanical Engineering, 2019, 55(7):1-8. [118] LIU Y, ZUO M J, LI Y F, et al. Dynamic reliability assessment for multi-state systems utilizing system-level inspection data[J]. IEEE Transactions on Reliability, 2015, 64(4):1287-1299. [119] LIU Y, CHEN C J. Dynamic reliability assessment for nonrepairable multistate systems by aggregating multilevel imperfect inspection data[J]. IEEE Transactions on Reliability, 2017, 66(2):281-297. [120] WANG J, GAO R X, YUAN Z, et al. A joint particle filter and expectation maximization approach to machine condition prognosis[J]. Journal of Intelligent Manufacturing, 2019, 30:605-621. [121] CHEN J, YUAN S, JIN X. On-line prognosis of fatigue cracking via a regularized particle filter and guided wave monitoring[J]. Mechanical Systems and Signal Processing, 2019, 131:1-17. [122] CHEN J, YUAN S, WANG H. On-line updating Gaussian process measurement model for crack prognosis using the particle filter[J]. Mechanical Systems and Signal Processing, 2020, 140. [123] HAILE M A, RIDDICK J C, ASSEFA A H. Robust particle filters for fatigue crack growth estimation in rotorcraft structures[J]. IEEE Transactions on Reliability, 2016, 65(3):1438-1448. [124] WANG M, FENG S, INCECIK A, et al. Structural fatigue life prediction considering model uncertainties through a novel digital twin-driven approach[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 391. [125] 付洋, 曹宏瑞, 郜伟强, 等. 数字孪生驱动的航空发动机涡轮盘剩余寿命预测[J]. 机械工程学报, 2021, 57(22):106-113. FU Yang, CAO Hongrui, GAO Weiyang, et al. Digital twin driven remaining useful life prediction for aero-engine turbine discs[J]. Journal of Mechanical Engineering, 2021, 57(22):106-113. [126] XIAHOU T F, LIU Y, ZENG Z G, et al. Remaining useful life prediction with imprecise observations:an interval particle filtering approach[J]. IISE Transactions, 2023, 55(11):1075-1090. [127] KIM S, CHOI J, KIM N. Data-driven prognostics with low-fidelity physical information for digital twin:physics-informed neural network[J]. Structural and Multidisciplinary Optimization, 2022, 65(9):255. [128] ZHOU T, ZHANG X, DROGUETT E, et al. A generic physics-informed neural network-based framework for reliability assessment of multi-state systems[J]. Reliability Engineering & System Safety, 2023, 229:108835. [129] GU H H, WANG R Z, TANG M J, et al. Data-physics-model based fatigue reliability assessment methodology for high-temperature components and its application in steam turbine rotor[J]. Reliability Engineering & System Safety, 2023:109633. [130] XIAHOU T F, WANG F, LIU Y, et al. Bayesian dual-input-channel LSTM-based prognostics:toward uncertainty quantification under varying future operations[J]. IEEE Transactions on Reliability, 2023. [131] KIM M, LIU K. A Bayesian deep learning framework for interval estimation of remaining useful life in complex systems by incorporating general degradation characteristics[J]. IISE Transactions, 2021, 53:326-340. [132] HUANG C G, YIN X, HUANG H Z, et al. An enhanced deep learning-based fusion prognostic method for RUL prediction[J]. IEEE Transactions on Reliability, 2020, 69:1097-1109. [133] LIU Y, GAO J, JIANG T, et al. Selective maintenance and inspection optimization for partially observable systems:an interactively sequential decision framework[J]. IISE Transactions, 2023, 55(5):463-479. [134] LIU Y, CHEN Y, JIANG T. Dynamic selective maintenance optimization for multi-state systems over a finite horizon:a deep reinforcement learning approach[J]. European Journal of Operational Research, 2020, 283(1):166-181. [135] SIRASKAR R, KUMAR S, PATIL S, et al. Reinforcement learning for predictive maintenance:a systematic technical review[J]. Artificial Intelligence Review, 2023:1-63. [136] LEE J, MITICI M. Deep reinforcement learning for predictive aircraft maintenance using probabilistic remaining-useful-life prognostics[J]. Reliability Engineering & System Safety, 2023, 230:108908. [137] ONG K S H, WANG W, NIYATO D, et al. Deep-reinforcement-learning-based predictive maintenance model for effective resource management in industrial IoT[J]. IEEE Internet of Things Journal, 2021, 9(7):5173-5188. [138] ROKHFOROZ P, FINK O. Distributed joint dynamic maintenance and production scheduling in manufacturing systems:framework based on model predictive control and Benders decomposition[J]. Journal of Manufacturing Systems, 2021, 59:596-606. [139] RODRÍGUEZ M L R, KUBLER S, DE GIORGIO A, et al. Multi-agent deep reinforcement learning based Predictive Maintenance on parallel machines[J]. Robotics and Computer-Integrated Manufacturing, 2022, 78:102406. [140] NGUYEN K A, DO P, GRALL A. Joint predictive maintenance and inventory strategy for multi-component systems using Birnbaum’s structural importance[J]. Reliability Engineering & System Safety, 2017, 168:249-261. [141] 宋学官, 来孝楠, 何西旺, 等. 重大装备形性一体化数字孪生关键技术[J].机械工程学报, 2022, 58(10):298-325. SONG Xueguan, LAI Xiaonan, HE Xiwang, et al. Key technologies of shape-performance integrated digital twin for major equipment[J]. Journal of Mechanical Engineering, 2022,58(10):298-325. [142] National Aeronautics and Space Administration. NASA Methodology for Physics of Failure-Based Reliability Assessments Handbook [R]. NASA/SP-20230004376, Washington, D.C., 2023. [143] 洪学武, 李军, 曾骥, 等.基于数字孪生的船舶远程运维系统分析[J]. 船舶物资与市场, 2021, 29(07):17-20. HONG Xuewu, LI Jun, ZENG Ji, et al. Analysis of ship remote operation and maintenance system based on digital twin[J]. Marine Equipment/Materials & Marketing, 2021, 29(07):17-20. |
[1] | 葛雪峰, 姜佳宝, 赵耀. 金属化膜电容器电热仿真分析*[J]. 电气工程学报, 2023, 18(3): 224-231. |
[2] | 张显程, 王润梓, 涂善东, 谷行行, 孙莉, 李凯尚. 工程损伤理论:内涵、挑战与展望[J]. 机械工程学报, 2023, 59(16): 2-17. |
[3] | 雷政, 姜鹏, 王启明, 姚蕊, 朱明. FAST促动器群系统可靠性研究[J]. 机械工程学报, 2022, 58(6): 289-294. |
[4] | 李博文, 贾祥, 赵骞, 郭波. 面向产品可靠性评估的退化和寿命数据分步融合方法[J]. 机械工程学报, 2022, 58(16): 430-440. |
[5] | 黄彬彬, 张映锋, 黄博, 任杉, 史丽春. 数字孪生驱动的复杂产品智能运维服务体系与核心技术[J]. 机械工程学报, 2022, 58(12): 250-260. |
[6] | 王嘉, 张云安, 韩旭. 基于互依关系的退化与随机冲击建模研究[J]. 机械工程学报, 2021, 57(2): 230-238. |
[7] | 魏发远, 谢朝阳, 孙昌璞, 康锐. 长贮装备性能退化评估刍议[J]. 机械工程学报, 2020, 56(16): 262-272. |
[8] | 李海洋, 谢里阳, 刘杰, 袁延凯, 姚常辉, 姜春龙. 无失效数据场合智能换刀机器人中轴承的可靠性评估[J]. 机械工程学报, 2019, 55(2): 186-194. |
[9] | 王嘉, 张露予, 陶友瑞, 李志刚. 基于时间和当前状态的退化与冲击模型[J]. 机械工程学报, 2019, 55(18): 180-186. |
[10] | 曹颖赛, 刘思峰, 方志耕, 张秦. 系统可靠性退化的单元责任Shapley值分配模型[J]. 机械工程学报, 2017, 53(20): 202-208. |
[11] | 袁炜灯,吴杰康,郑风雷,吴志山,黄强. 多元件并列运行电力系统供电可靠性评估方法[J]. 电气工程学报, 2017, 12(2): 48-50. |
[12] | 王晓明, 李彦锋, 李爱峰, 米金华, 黄洪钟. 模糊数据下基于连续时间贝叶斯网络的整流回馈系统可靠性建模与评估[J]. 机械工程学报, 2015, 51(14): 167-174. |
[13] | 刘波, 安宗文. 考虑零件寿命相关的风电齿轮箱可靠性分析[J]. 机械工程学报, 2015, 51(10): 164-171. |
[14] | 彭卫文;黄洪钟;李彦锋;杨园鉴;李海庆. 基于数据融合的加工中心功能铣头贝叶斯可靠性评估[J]. , 2014, 50(6): 185-191. |
[15] | 姚成玉;陈东宁;王斌. 基于T-S故障树和贝叶斯网络的模糊可靠性评估方法[J]. , 2014, 50(2): 193-201. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||