[1] LEI Jingtao,YU Huangying,WANG Tianmiao. Dynamic bending of bionic flexible body driven by pneumatic artificial muscles(PAMs) for spinning gait of quadruped robot[J]. Chinese Journal of Mechanical Engineering,2016,29(1):11-20.
[2] DING Feng,YIN Liucheng,DANG Liuqiang. Reliability assessment of the small sample aero-engine bearings[J]. Advanced Materials Research,2014,986-987:858-861.
[3] LIU Jianfeng,YIN Yichao,FU Guozhong,et al. Notice of retraction a fusion method of zero-failure data in different environments for reliability assessment of success-failure type products[C]//International Conference on Quality,Reliability,Risk,Maintenance,and Safety Engineering. IEEE,2013:1102-1105.
[4] 韩明. 无失效数据情形可靠性参数的估计和调整[J]. 应用数学,2006,19(2):325-330. HAN Ming. Estimation and rectification of reliability parameters in the case of zero-failure data[J]. Mathematica Applicata,2006,19(2):325-330.
[5] NAGATA H,LI Yagang,MAACK D R,et al. Reliability estimation from zero-failure LiNbO3,modulator bias drift data[J]. IEEE Photonics Technology Letters,2004,16(6):1477-1479.
[6] ALI J B,CHEBEL-MORELLO B,SAILDI L,et al. Accurate bearing remaining useful life prediction based on Weibull distribution and artificial neural network[J]. Mechanical Systems & Signal Processing,2015,56-57:150-172.
[7] MA Meng,CHEN Xuefeng,WANG Shibin,et al. Bearing degradation assessment based on weibull distribution and deep belief network[C]//International Symposium on Flexible Automation,IEEE,2016:382-385.
[8] YANG Jianwei,WANG Jinhai,XIE Yidong. Bayesian method for reliability assessment based on zero-failure data under small sample size:Application for high speed railway vehicle[J]. Information Technology Journal,2013,12(21):6203-6207.
[9] BREMERMAN M V. Practical Bayesian methods for determining device failure rates from zero-failure data[C]//Reliability and Maintainability Symposium,IEEE,2013:1-6.
[10] 茆诗松,夏剑锋,管文琪. 轴承寿命试验中无失效数据的处理[J]. 应用概率统计,1993(3):326-331. MAO Shisong,XIA Jianfeng,GUAN Wenqi. The reliability analysis of zero-failure data for bearing life test[J]. Chinese Journal of Applied Probability and Statistics,1993(3):326-331.
[11] HAN Ming. Bayesian estimation and hierarchical Bayesian estimationof zero-failure data[J]. Chinese Quarterly Journal of Mathematics,2001,16(1):65-70.
[12] 刘海涛,张志华. 威布尔分布无失效数据的Bayes可靠性分析[J]. 系统工程理论与实践,2008,28(11):103-108. LIU Haitao,ZHANG Zhinhua. Bayesian reliability analysis of Weibull zero-failure data[J]. System Engineering Theory and Practice,2008,28(11):103-108.
[13] 韩明. 多层先验分布的构造及其应用[J]. 运筹与管理,1997(3):31-40. HAN Ming. The structure of hierarchical prior distribution and application[J]. Operations Research and Management Science,1997(3):31-40.
[14] 韩明. 产品无失效数据的综合处理[J]. 机械工程学报,2003,39(2):129-132. HAN Ming. Synthesized process for zero-failure data of the products[J]. Journal of Mechanical Engineering,2003,39(2):129-132.
[15] 蔡国梁,吴来林,唐晓芬. 双超参数无失效数据的E-Bayes可靠性分析[J]. 江苏大学学报,2010,31(6):736-739. CAI Guoliang,WU Laifen,TANG Xiaofen. E-Bayes reliability analysis of double hyper parameters zero failure data[J]. Journal of Jiangsu University,2010,31(6):736-739.
[16] 傅惠民,张勇波.Weibull分布定时无失效数据可靠性分析方法[J]. 航空动力学报,2010,25(12):2807-2810. FU Huimin,ZHANG Yongbo. Method of reliability analysis for time truncated zero-failure databased on Weibulldistribution[J]. Journal of Aerospace Power,2010,25(12):2807-2810.
[17] HAN Ming. Confidence limit of reliability parameters in the case of zero-failure data[J]. Chinese Journal of Engineering Mathematics,2004,21(2):245-244.
[18] JIANG Renbin,JIANG Danyu. Fiducial lower confidence limits of reliability for a standby system based on zero-failure data.[J]. J. Zhejiang Univ. Sci. Ed,2010(6):629-632.
[19] 韩明. Weibull分布可靠性参数的置信限[J]. 机械强度,2009,31(1):59-62. HAN Ming. Confidence limits of reliability parameters for Weibull distribution Journal[J]. Journal of Mechanical Strength,2009,31(1):59-62.
[20] 贾祥,王小林,郭波. 极少失效数据和无失效数据的可靠性评估[J]. 机械工程学报,2016,52(2):182-188. JIA Xiang,WANG Xiaolin,GUO Bo. Reliability assessment for very few failure data and zero-failure data[J]. Journal of Mechanical Engineering,2016,52(2):182-188.
[21] 罗巍,张春华,谭源源,等. 基于Bootstrap的可修系统贮存可用度近似置信下限评估方法[J]. 兵工学报,2010,31(3):391-395. LUO Wei,ZHANG Chunhua,TAN Yuanyuan,et al. Estimating method of the approximate confidence lower limit of repairable system storage availabilitybased on Bootstrap[J]. Acta Armamentarii,2010,31(3):391-395.
[22] 夏新涛,叶亮,李云飞,等. 基于多层自助最大熵法的可靠性评估[J]. 兵工学报,2016,37(7):1317-1329. XIA Xintao,YE Liang,LI Yunfei,et al. Reliability evaluation based on hierarchical Bootstrap maximum entropy method[J]. Acta Armamentarii,2016,37(7):1317-1329.
[23] LIANG R,WU W,YU F,et al. Simplified method for evaluating shield tunnel deformation due to adjacent excavation[J]. Tunnelling and Underground Space Technology,2018,71:94-105.
[24] 杨晓蔚. 滚动轴承疲劳寿命威布尔分布三参数的研究[D]. 合肥:合肥工业大学,2003. YANG Xiaowei. Study on three parameters of Wipur distribution for fatigue life of rolling bearings[D]. Hefei:Hefei University of Technology,2003.
[25] 宁江凡,鄢小清,张士峰. 液体火箭发动机无失效条件下的可靠性分析方法[J]. 国防科技大学学报,2006,28(5):22-25. NING Jiangfan,YAN Xiaoqing,ZHANG Shifeng. Study on reliability analysis method for liquid rocketengine in the case of zero-failure data[J]. Journal of National University of Defense Technology,2006,28(5):22-25.
[26] 茆诗松,王玲玲,濮晓龙. 威布尔分市场合无失效数据的可靠性分析[J]. 应用概率统计,1996(1):94-107. MAO Shisong,WANG Lingling,PU Xiaolong. Reliability analysis for Weibull zero-failure data[J]. Chinese Journal of Applied Probability and Statistics,1996(1):94-107.
[27] BERGER J O. Statistical decision theory and Bayesian analysis[J]. Springer,2002,83(401):266.
[28] 韩明.失效概率的E-Bayes估计及其性质[J].数学物理学报,2007,27A(3):488-495. HAN Ming. E-Bayes estimation of failure probability and its properties[J]. ActaMathematicaScientia,2007,27A(3):488-495.
[29] JOSHI M,SEIDEL-MORGENSTERN A,KREMLING A. Exploiting the bootstrap method for quantifying parameter confidence intervals in dynamical systems[J]. Metabolic Engineering,2006,8(5):447.
[30] FLYGARE M E,AUSTIN J A,BUCKWALTER M. Maximum likelihood estimation for the 2-parameter Weibulldistribution based on interval-data[J]. IEEE Transactions on Reliability,2009,R-34(1):57-59.
[31] HONG HP. Selection of regressand for fitting the extreme value distributions using the ordinary,weighted and generalized least-squares methods[J]. Reliability Engineering & System Safety,2013,118(10):71-80.
[32] BAIN L. Inferences based on censored sampling from the Weibull or extreme-value distribution[J]. Technometrics,1972,14(3):693-702.
[33] 高攀东,沈雪瑾,陈晓阳,等. 无失效数据下航空轴承的可靠性分析[J]. 航空动力学报,2015,30(8):1980-1987. GAO Pandong,SHEN Xuejin,CHEN Xiaoyang,et. Reliability analysis for aircraft bearing with zero-failure data[J]. Journal of Aerospace Power,2015,30(8):1980-1987.
[34] STENSRUD E,FOSS T,KITCHENHANM B,et al. An empirical validation of the relationship between the magnitude of relative error and project size[C]//Software Metrics,2002. Proceedings. Eighth IEEE Symposium on IEEE,2002:3-12. |