[1] HU Zhen, DU Xiaoping. A sampling approach to extreme value distribution for time-dependent reliability analysis[J]. Journal of Mechanical Design, 2013, 135(7):071003. [2] ZHANG Dequan, HAN Xu, JIANG Chao, et al. Time-dependent reliability analysis through response surface method[J]. Journal of Mechanical Design, 2017, 139(4):041404. [3] 王丕东, 张建国, 阚琳洁, 等. 基于时变区间和穿阈模型的机械时变可靠性分析方法[J]. 机械工程学报, 2017, 53(11):1-9. WANG Pidong, ZHANG Jianguo, KAN Linjie, et. al. Time variant reliability approach with time-variant interval and upcrossing model[J]. Journal of Mechanical Engineering, 2017, 53(11):1-9. [4] SUDRET B. Analytical derivation of the outcrossing rate in time-variant reliability problems[J]. Structure and Infrastructure Engineering, 2008, 4(5):353-362. [5] ANDRIEU-RENAUD C, SUDRET B, LEMAIRE M. The PHI2 method:a way to compute time-variant reliability[J]. Reliability Engineering & System Safety, 2004, 84(1):75-86. [6] 袁修开, 郑振轩, 罗冬秀. 加权随机模拟的时变可靠性分析方法[J]. 国防科技大学学报, 2021, 43(2):125-131. YUAN Xiukai, ZHENG Zhenxuan, LUO Dongxiu. Weighted stochastic simulation for time-variant reliability analysis[J]. Journal of National University of Defense Technology, 2021, 43(2):125-131 [7] LI Junxian, CHEN Jianqiao, WEI Junhong, et al. Developing an instantaneous response surface method t-IRS for time-dependent reliability analysis[J]. Acta Mechanica Solida Sinica, 2019, 32:446-462. [8] HU Zhen, MAHADEVAN S. A single-loop kriging surrogate modeling for time-dependent reliability analysis[J]. Journal of Mechanical Design, 2016, 138(6):061406. [9] 彭磊, 刘莉, 龙腾. 基于动态径向基函数代理模型的优化策略[J]. 机械工程学报, 2011, 47(7):164-170. PENG Lei, LIU Li, LONG Teng. Optimization strategy using dynamic radial basis function metamodel[J]. Journal of Mechanical Engineering, 2011, 47(7):164-170. [10] 陈霞, 李磊, 岳珠峰, 等. Kriging代理模型下基于垂距的多点取样算法[J]. 机械工程学报, 2015, 51(9):153-158. CHEN Xia, LI Lei, YUE Zhufeng, et. al. Sampling method with multi-point sampling algorithm based on vertical distance in kriging model[J]. Journal of Mechanical Engineering, 2015, 51(9):153-158. [11] HU Weifei, YAN Jiquan, ZHAO Feng, et al. Surrogate-based time-dependent reliability analysis for a digital twin[J]. Journal of Mechanical Design, 2023, 145(9):091708. [12] SUN Zhili, WANG Jian, LI Rui, et al. LIF:A new Kriging based learning function and its application to structural reliability analysis[J]. Reliability Engineering & System Safety, 2017, 157:152-165. [13] RAISSI M, PERDIKARIS P, KARNIADAKIS G E. Physics-informed neural networks:A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 2019, 378:686-707. [14] LI Jing, XIU Dongbin. Evaluation of failure probability via surrogate models[J]. Journal of Computational Physics, 2010, 229(23):8966-8980. [15] NABIAN M A, GLADSTONE R J, MEIDANI H. Efficient training of physics‐informed neural networks via importance sampling [J]. Computer‐Aided Civil Infrastructure Engineering, 2021, 36(8):962-77. [16] WU Chenxi, ZHU Min, TAN Qinyang, et al. A comprehensive study of non-adaptive and residual-based adaptive sampling for physics-informed neural networks[J]. Computer Methods in Applied Mechanics and Engineering, 2023, 403:115671. [17] NABIAN M A, GLADSTONE R J, MEIDANI H. Efficient training of physics‐informed neural networks via importance sampling[J]. Computer‐Aided Civil and Infrastructure Engineering, 2021, 36(8):962-977. [18] CAI Shengze, MAO Zhiping, WANG Zhicheng, et al. Physics-informed neural networks (PINNs) for fluid mechanics:A review[J]. Acta Mechanica Sinica, 2021, 37(12):1727-1738. [19] CUOMO S, DI COLA V S, GIAMPAOLO F, et al. Scientific machine learning through physics–informed neural networks:Where we are and what’s next[J]. Journal of Scientific Computing,2022, 92(3):88. [20] ZHANG Chi, SHAFIEEZADEH A. Simulation-free reliability analysis with active learning and physics-informed neural network[J]. Reliability Engineering & System Safety, 2022, 226:108716. [21] LI Chun-Ching, DER KIUREGHIAN A. Optimal discretization of random fields[J]. Journal of Engineering Mechanics, 1993, 119(6):1136-1154. [22] ZWICKER D. py-pde:A python package for solving partial differential equations[J]. Journal of Open Source Software, 2020, 5(48):2158. [23] XIU Dongbin, KARNIADAKIS G E. Supersensitivity due to uncertain boundary conditions[J]. International Journal for Numerical Methods in Engineering, 2004, 61(12):2114-2138. [24] CHIKAZAWA Y, KOSHIZUKA S, OKA Y. A particle method for elastic and visco-plastic structures and fluid-structure interactions[J]. Computational Mechanics, 2001, 27(2):97-106. |