机械工程学报 ›› 2024, Vol. 60 ›› Issue (3): 254-281.doi: 10.3901/JME.2024.03.254
吕利叶1, 鲁玉军1, 王硕2, 刘印2, 李昆鹏2, 宋学官2
收稿日期:
2023-03-01
修回日期:
2023-09-04
出版日期:
2024-02-05
发布日期:
2024-04-28
通讯作者:
宋学官,男,1982年出生,博士,教授,博士研究生导师。主要研究方向为多学科建模分析与优化设计、工业大数据与人工智能技术、装备智能化和数字孪生等。E-mail:sxg@dlut.edu.cn
作者简介:
吕利叶,女, 1988 年出生,博士,讲师。主要研究方向为代理模型、多保真度代理模型、试验设计、优化设计、数字孪生等。E-mail:lvliye@zstu.edu.cn;鲁玉军,男, 1976 年出生,博士,教授,硕士研究生导师。主要研究方向为数字化设计与制造、智能制造、工业工程、TRIZ 创新方法等。E-mail:luet_lyj@zstu.edu.cn;王硕,男, 1993 年出生,博士。主要研究方向为基于代理模型的优化设计和数字孪生。E-mail:wangshuo17@foxmail.com;刘印,女, 1992 年出生,博士。主要研究方向为多学科建模分析与结构优化,基于代理模型的数据预测与采样方法。Email:liuyin 8580@163.com;李昆鹏,男, 1992 年出生,博士。主要研究方向为基于代理模型的优化设计、装备智能化和数字孪生。E-mail:785282118@qq.com
基金资助:
LÜ Liye1, LU Yujun1, WANG Shuo2, LIU Yin2, LI Kunpeng2, SONG Xueguan2
Received:
2023-03-01
Revised:
2023-09-04
Online:
2024-02-05
Published:
2024-04-28
摘要: 代理模型是计算复杂且费时的数值分析模型的替代模型,在一定程度上弥补了传统工程优化设计和数值仿真分析设计周期长、计算成本高、维数灾难等短板。近年来,代理模型技术蓬勃发展,成果丰硕,被逐渐应用在航空航天、船舶、汽车、发电等领域。首先对代理模型进行总体概述,调查了近三十年代理模型相关论文发表总量与年发表量,总体分析了国内外学者在此领域的投入与产出。其次从试验设计、单保真度代理模型、多保真度代理模型这三方面较为详细地介绍了代理模型研究现状。接着围绕代理模型在优化设计中的应用展开调查,分析与概述了代理模型辅助的多学科优化设计、多目标优化设计和不确定性优化设计。最后归纳总结了代理模型技术目前存在的问题,并对未来的研究方向提出了一些建议。
中图分类号:
吕利叶, 鲁玉军, 王硕, 刘印, 李昆鹏, 宋学官. 代理模型技术及其应用:现状与展望[J]. 机械工程学报, 2024, 60(3): 254-281.
LÜ Liye, LU Yujun, WANG Shuo, LIU Yin, LI Kunpeng, SONG Xueguan. Survey and Prospect of Surrogate Model Technique and Application[J]. Journal of Mechanical Engineering, 2024, 60(3): 254-281.
[1] QUEIPO N V, HAFTKA R T, WEI S, et al. Surrogate-based analysis and optimization[J]. Progress in Aerospace Sciences, 2005, 41(1):1-28. [2] CAI X, QIU H, GAO L, et al. An enhanced RBF-HDMR integrated with an adaptive sampling method for approximating high dimensional problems in engineering design[J]. Structural and Multidisciplinary Optimization, 2016, 53:1209-1229. [3] GORISSEN D, COUCKUYT I, DEMEESTER P, et al. A surrogate modeling and adaptive sampling toolbox for computer based design[J]. Journal of Machine Learning Research, 2010, 11(1):2051-2055. [4] VENKATARAMAN S, HAFTKA R T. Structural optimization complexity:What has Moore's law done for us?[J]. Structural and Multidisciplinary Optimization, 2004, 28:375-387. [5] FORRESTER A I J, SÓBESTER A, KEANE A J. Multi-fidelity optimization via surrogate modelling[J]. Proceedings of the Royal Society A:Mathematical, 2007, 463(2088):3251-3269. [6] PERI D, CAMPANA E F. High-fidelity models and multiobjective global optimization algorithms in simulation-based design[J]. Journal of Ship Research, 2005, 49(3):159-175. [7] YANG J, ZHAN Z, ZHENG K, et al. Enhanced similarity-based metamodel updating strategy for reliability-based design optimization[J]. Engineering Optimization, 2016, 48(12):2026-2045. [8] JIN R, CHEN W, SIMPSON T W. Comparative studies of metamodeling techniques under multiple modeling criteria[J]. Structural and Multidisciplinary Optimization, 2001, 23:1-13. [9] SIMPSON T W, POPLINSKI J D, KOCH P N, et al. Metamodels for computer-based engineering design:Survey and recommendations[J]. Engineering With Computers, 2001, 17(2):129-150. [10] KLEIJNEN J P C. Regression metamodels for generalizing simulation results[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(2):93-96. [11] BLANNING R W. The construction and implementation of metamodels[J]. Simulation, 1975, 24(6):177-184. [12] O'HAGAN A. Bayesian analysis of computer code outputs:A tutorial[J]. Reliability Engineering and System Safety, 2006, 91(10-11):1290-1300. [13] BIEKER H P, SLUPPHAUG O, JOHANSEN T A. Real-time production optimization of oil and gas production systems:A technology survey[J]. SPE Production and Operations, 2007, 22(04):382-391. [14] KLEIJNEN J P C. Kriging metamodeling in simulation:A review[J]. European Journal of Operational Research, 2009, 192(3):707-716. [15] 毛凤山,陈昌富,朱世民.代理模型方法及其在岩土工程中的应用综述[J].地基处理, 2020, 2(4):295-306. MAO Fengshan, CHEN Changfu, ZHU Shimin. Surrogate model method and its application in geotechnical engineering[J]. Chinese Journal of Ground Improvement, 2020, 2(4):295-306. [16] 韩忠华,许晨舟,乔建领,等.基于代理模型的高效全局气动优化设计方法研究进展[J].航空学报, 2020, 41(5):25-65. HAN Zhonghua, XU Chenzhou, QIAO Jianling, et al. Recent progress of efficient global aerodynamic shape optimization using surrogate-based approach[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5):25-65. [17] WALZER R. Galen, on medical experience[J]. Philosophy, 1946, 21(78):93-94. [18] KOTZ S, JOHNSON N L. Breakthroughs in statistics:methodology and distribution[M]. New York:Springer Science & Business Media, 1992. [19] METROPOLIS N, ULAM S. The Monte Carlo method[J]. Journal of the American Statistical Association, 1949, 44(247):335-341. [20] 梁红霞."田口方法"的集大成者——田口玄一[J].中国质量, 2003(10):40. LIANG Hongxia. The master of "Taguchi Method" -Genichi Taguchi[J]. China Quality, 2003(10):40. [21] 方开泰.均匀试验设计的理论、方法和应用——历史回顾[J].数理统计与管理, 2004, 23(3):69-80. FANG Kaitai. The theory, method and application of uniform test design——Historical review[J]. Application of Statistics and Management, 2004, 23(3):69-80. [22] MCKAY M D, BECKMAN R J, CONOVER W J. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code[J]. Technometrics, 2000, 42(1):55-61. [23] WANG G G, SHAN S Q. Review of metamodeling techniques in support of engineering design optimization[J]. Journal of Mechanical Design, 2007, 129(4):370-380. [24] GARUD S S, KARIMI I A, KRAFT M. Design of computer experiments:A review[J]. Computers and Chemical Engineering, 2017, 106(2):71-95. [25] LIU H, ONG Y S, CAI J. A survey of adaptive sampling for global metamodeling in support of simulation-based complex engineering design[J]. Structural and Multidisciplinary Optimization, 2018, 57:393-416. [26] OWEN A B. Orthogonal arrays for computer experiments, integration and visualization[J]. Statistica Sinica, 1992, 2(2):439-452. [27] SACKS J, SCHILLER S B, WELCH W J. Designs for computer experiments[J]. Technometrics, 1989, 31(1):41-47. [28] VIANA F A C. A tutorial on Latin hypercube design of experiments[J]. Quality and Reliability Engineering International, 2016, 32(5):1975-1985. [29] KENNY Q Y, LI W, SUDJIANTO A. Algorithmic construction of optimal symmetric Latin hypercube designs[J]. Journal of Statistical Planning and Inference, 2000, 90(1):145-159. [30] WANG S, LV L, DU L, et al. An improved LHS approach for constrained design space based on successive local enumeration algorithm[C]//2019 IEEE 9th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER). Suzhou, IEEE, 2019:896-899. [31] VIANA F A C, VENTER G, BALABANOV V. An algorithm for fast optimal Latin hypercube design of experiments[J]. International Journal for Numerical Methods in Engineering, 2010, 82(2):135-156. [32] JIN R, CHEN W, SUDJIANTO A. On sequential sampling for global metamodeling in engineering design[C]//ASME 2002 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Montreal:International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2002, 539-548. [33] KUSHNER H J. A new method of locating the maximum point of an arbitrary multipeak curve in the presence of noise[J]. Journal of Basic Engineering, 1964, 86(1):97-106. [34] STUCKMAN B E. A global search method for optimizing nonlinear systems[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1988, 18(6):965-977. [35] SCHONLAU M, WELCH W J, JONES D R. Global versus local search in constrained optimization of computer models[R]//IMS Lecture Notes-Monograph Series. Hayward:Institute of Mathematical Statistics, 1998, 34:11-25. [36] SÓBESTER A, LEARY S J, KEANE A J. On the design of optimization strategies based on global response surface approximation models[J]. Journal of Global Optimization, 2005, 33(1):31-59. [37] LAM C Q. Sequential adaptive designs in computer experiments for response surface model fit[D]. Columbus:The Ohio State University, 2008. [38] DESCHRIJVER D, CROMBECQ K, NGUYEN H M, et al. Adaptive sampling algorithm for macromodeling of parameterized S-Parameter responses[J]. IEEE Transactions on Microwave Theory and Techniques, 2010, 59(1):39-45. [39] XU S, LIU H, WANG X, et al. A robust error-pursuing sequential sampling approach for global metamodeling based on Voronoi diagram and cross validation[J]. Journal of Mechanical Design, 2014, 136(7):69-74. [40] HERTEN J V D, COUCKUYT I, DESCHRIJVER D, et al. A fuzzy hybrid sequential design strategy for global surrogate modeling of high-dimensional computer experiments[J]. SIAM Journal on Scientific Computing, 2015, 37(2):A1020-A1039. [41] ZHANG Y, KIM N H, HAFTKA R T. General-surrogate adaptive sampling using interquartile range for design space exploration[J]. Journal of Mechanical Design, 2020, 142(5):051402. [42] HUANG J,GAO Z,ZHOU Z,et al. An improved adaptive sampling and experiment design method for aerodynamic optimization[J]. Chinese Journal of Aeronautics, 2015, 28(5):1391-1399. [43] XIAO N C, ZUO M J, ZHOU C. A new adaptive sequential sampling method to construct surrogate models for efficient reliability analysis[J]. Reliability Engineering and System Safety, 2018, 169:330-338. [44] ZHOU Q, WANG Y, CHOI S K, et al. A sequential multi-fidelity metamodeling approach for data regression[J]. Knowledge-Based Systems, 2017, 134(15):199-212. [45] WU J, LUO Z, ZHANG N, et al. A new sequential sampling method for constructing the high-order polynomial surrogate models[J]. Engineering Computations, 2018, 35(2):529-564. [46] GUNST R F. Response surface methodology:process and product optimization using designed experiments[J]. Technometrics, 1996, 38(3):284-286. [47] SACKS J, WELCH W J, MITCHELL T J, et al. Design and analysis of computer experiments[J]. Statistical Science, 1989, 4(4):409-423. [48] PARK J, SANDBERG I W. Approximation and radial-basis-function networks[J]. Neural Computation, 1993, 5(2):305-316. [49] BRERETON R G, LLOYD G R. Support vector machines for classification and regression[J]. Analyst, 2010, 135(2):230-267. [50] LI H, XU B, LU G, et al. Multi-objective optimization of PEM fuel cell by coupled significant variables recognition, surrogate models and a multi-objective genetic algorithm[J]. Energy Conversion and Management, 2021, 236:114063. [51] LANGLEY P, SIMON H A. Applications of machine learning and rule induction[J]. Communications of the ACM, 1995, 38(11):54-64. [52] MATHERON G. Principles of geostatistics[J]. Economic Geology, 1963, 58(8):1246-1266. [53] 刘海涛.基于近似模型的工程优化方法中相关问题研究及应用[D].大连:大连理工大学, 2016. LIU Haitao. The research and application of metamodel-based engineering optimization[D]. Dalian:Dalian University of Technology, 2016. [54] HARDY R L. Multiquadric equations of topography and other irregular surfaces[J]. Journal of Geophysical Research, 1971, 76(8):1905-1915. [55] VAPNIK V N. An overview of statistical learning theory[J]. IEEE Transactions on Neural Networks, 1999, 10(5):988-999. [56] 曹鸿钧,段宝岩.基于Kriging模型的后优化近似研究[J].机械设计与研究, 2004, 20(5):10-13. CAO Hongjun, DUAN Baoyan. Approximation research of post-optimization based on Kriging model[J]. Chinese Machine Design and Research, 2004, 20(5):10-13. [57] 汤龙,王琥,李光耀. Kriging-HDMR非线性近似模型方法[J].力学学报, 2011, 43(4):780-784. TANG Long, WANG Hu, LI Guangyao. Kriging-HDMR nonlinear surrogate model method[J]. Journal of Theoretical and Applied Mechanics, 2011, 43(4):780-784. [58] 舒乐时,周奇,蒋平,等.基于序列Kriging模型的潜器型线优化设计[J].船舶工程, 2016, 38(9):43-46. SHU Leshi, ZHOU Qi, JIANG Ping, et al. Design optimization of submerged vehicle profile based on sequential Kriging model[J]. Ship Engineering, 2016, 38(9):43-46. [59] 彭磊,刘莉,龙腾.基于径向基函数的卫星平台桁架结构优化设计[J].南京航空航天大学学报, 2014, 46(3):475-480. PENG Lei, LIU Li, LONG Teng. Satellite bus truss structure optimization using radial basis function[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2014, 46(3):475-480. [60] WANG B, HAO P, LI G, et al. Determination of realistic worst imperfection for cylindrical shells using surrogate model[J]. Structural and Multidisciplinary Optimization, 2013, 48:777-794. [61] 郝鹏,王博,李刚,等.基于代理模型和等效刚度模型的加筋柱壳混合优化设计[J].计算力学学报, 2012, 29(4):481-486. HAO Peng, WANG Bo, LI Gang, et al. Hybrid optimization of grid-stiffened cylinder based on surrogate model and smeared stiffener model[J]. Chinese Journal of Computational Mechanics, 2012, 29(4):481-486. [62] 刘海涛,徐胜利,王晓放,等. 1种基于Kriging近似模型的叶片罩量优化设计方法[J].航空发动机, 2015, 41(5):24-27. LIU Haitao, XU Shengli, WANG Xiaofang, et al. Optimization design method of gravity center eccentricity for blade based on Kriging surrogate model[J]. Aeroengine, 2015, 41(5):24-27. [63] 刘俊,宋文萍,韩忠华.基于代理模型的飞翼多目标气动优化设计[J].航空计算技术, 2015, 45(2):1-5. LIU Jun, SONG Wenping, HAN Zhonghua. Multi-objective aerodynamic design optimization of a flying wing using surrogate model[J]. Aeronautical Computing Technique, 2015, 45(2):1-5. [64] 韩旭.基于数值模拟的设计理论与方法[M].北京:科学出版社, 2015. HAN Xu. Numerical simulation based-design:theory and methods[M]. Beijing:Science Press, 2015. [65] 聂文超,蔡卫军.基于气动代理模型的雷箭分离快速仿真[J].水下无人系统学报, 2019, 27(6):688-694. NIE Wenchao, CAI Weijun. Rapid simulation on torpedo-rocket separation based on the aerodynamic surrogate model[J]. Journal of Unmanned Undersea Systems, 2019, 27(6):688-694. [66] 苏杭朋.基于单点力反馈的虚拟装配系统的研究与开发[D].广州:华南理工大学, 2015. SU Hangpeng. Research and development on a virtual assembly system based on one point force feedback[D]. Guangzhou:South China University of Technology, 2015. [67] ZHANG C, SUN Q, SUN W, et al. A construction method of digital twin model for contact characteristics of assembly interface[J]. The International Journal of Advanced Manufacturing Technology, 2021, 113:2685-2699. [68] 韩少强,宋文萍,韩忠华,等.基于梯度增强型Kriging模型的气动反设计方法[J].航空学报, 2017, 38(7):138-152. HAN Shaoqiang, SONG Wenping, HAN Zhonghua, et al. Aerodynamic inverse design method based on gradient-enhanced Kriging model[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(7):138-152. [69] KRISHNAMURTHY T, ROMERO V. Construction of response surfaces with higher order continuity and its application to reliability engineering[C]//43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Denver:AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2002, 1466. [70] KRISHNAMURTHY T. Response surface approximation with augmented and compactly supported radial basis functions[C]//44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Norfolk:AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2003, 1748. [71] LIAO C C. Enhanced RBF network for recognizing noise-riding power quality events[J]. IEEE Transactions on Instrumentation and Measurement, 2009, 59(6):1550-1561. [72] 郭丰.产品方案设计中的近似建模与知识处理方法研究[D].哈尔滨:哈尔滨工业大学, 2017. GUO Feng. Research on approximation modeling and knowledge processing methods for product scheme design[D]. Harbin:Harbin Institute of Technology, 2017. [73] 冯青青. CAD/CAE/MDO过程集成与流程自动化关键技术研究[D].上海:上海交通大学, 2019. FENG Qingqing. The research on technical problems in the integration of CAD/CAE/MDO[D]. Shanghai:Shanghai Jiao Tong University, 2019. [74] XIANG H, LI Y, LIAO H, et al. An adaptive surrogate model based on support vector regression and its application to the optimization of railway wind barriers[J]. Structural and Multidisciplinary Optimization, 2017, 55:701-713. [75] HWANG J T, MARTINS J R R A. A fast-prediction surrogate model for large datasets[J]. Aerospace Science and Technology, 2018, 75:74-87. [76] SHAN S, WANG G G. Metamodeling for high dimensional simulation-based design problems[J]. Journal of Mechanical Design, 2010. 132(5):051009. [77] CHUNG H S, ALONSO J. Using gradients to construct cokriging approximation models for high-dimensional design optimization problems[C]//40th AIAA Aerospace Sciences Meeting & Exhibit. Reno:AIAA Aerospace Sciences Meeting & Exhibit, 2002,0317. [78] HAN Z H, ZHANG Y, SONG C X, et al. Weighted gradient-enhanced kriging for high-dimensional surrogate modeling and design optimization[J]. AIAA Journal, 2017, 55(12):4330-4346. [79] GUO Y, GONG D, WANG H. Adaptive evaluation strategy based on surrogate model[C]//12th International Conference. Beijing:Human-Computer Interaction. Interaction Design and Usability, 2007, 472-481. [80] 王晗希.基于交互式遗传算法的服装几何花卉图案的设计[D].杭州:浙江理工大学, 2017. WANG Hanxi. Design of geometric flower cluster based on interactive genetic algorithm[D]. Hangzhou:Zhejiang Sci-Tech University, 2017. [81] 张浩然,汪晓东.回归最小二乘支持向量机的增量和在线式学习算法[J].计算机学报, 2006, 29(3):400-406. ZHANG Haoran, WANG Xiaodong. Incremental and online learning algorithm for regression least squares support vector machine[J]. Chinese Journal of Computers, 2006, 29(3):400-406. [82] 周晓剑,侯蓉.面向大数据的增量式RBF学习算法[J].统计与决策, 2019(18):68-71. ZHOU Xiaojian, HOU Rong. RBF incremental learning algorithm for big data[J]. Statistics and Decision, 2019(18):68-71. [83] 周晓剑,王乐研.面向大数据流的增量式Kriging学习算法研究[J].统计与信息论坛, 2020, 35(10):21-26. ZHOU Xiaojian, WANG Leyan. A study on incremental kriging learning algorithm for big data flow[J]. Statistics and Information Forum, 2020, 35(10):21-26. [84] 陈烯烯.面向大数据基于DEA和RBF/SVM的预测方法研究[D].南京:南京邮电大学, 2020. CHEN Xixi. Prediction methods based on DEA and RBF/SVM for big data[D]. Nanjing:Nanjing University of Posts and Telecommunications, 2020. [85] GROLINGER K, CAPRETZ M A M, SEEWALD L. Energy consumption prediction with big data:Balancing prediction accuracy and computational resources[C]//2016 IEEE International Congress on Big Data. San Francisco:IEEE International Congress on Big Data, 2016:157-164. [86] VIANA F A C, SIMPSON T W, BALABANOV V, et al. Special section on multidisciplinary design optimization:metamodeling in multidisciplinary design optimization:how far have we really come?[J]. AIAA Journal, 2014, 52(4):670-690. [87] ZHOU X, JIANG T. Metamodel selection based on stepwise regression[J]. Structural and Multidisciplinary Optimization, 2016, 54:641-657. [88] SOBIESZCZANSKI-SOBIESKI J, HAFTKA R T. Multidisciplinary aerospace design optimization:survey of recent developments[J]. Structural Optimization, 1997, 14:1-23. [89] 张科施,韩忠华,李为吉,等.基于近似技术的高亚声速运输机机翼气动/结构优化设计[J].航空学报, 2006, 27(5):810-815. ZHANG Keshi, HAN Zhonghua, LI Weiji, et al. Multidisciplinary aerodynamic/structural design optimization for high subsonic transport wing using approximation technique[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(5):810-815. [90] SONG X, SUN G, LI G, et al. Crashworthiness optimization of foam-filled tapered thin-walled structure using multiple surrogate models[J]. Structural and Multidisciplinary Optimization, 2013, 47:221-231. [91] 郑少平,陈静,程远胜,等.代理模型技术及其在船舶板架强度和稳定性计算中的应用[J].中国造船, 2013, 54(1):40-51. ZHENG Shaoping, CHEN Jing, CHENG Yuansheng, et al. Surrogate models and their application in calculation of strength and stability of ship grillage[J]. Ship Building of China, 2013, 54(1):40-51. [92] GOEL T, HAFTKA R T, SHYY W, et al. Ensemble of surrogates[J]. Structural and Multidisciplinary Optimization, 2007, 33:199-216. [93] PERRONE M P, COOPER L N. When networks disagree:Ensemble methods for hybrid neural networks[C]//20th Century Physics|How We Learn; How We Remember:Toward an Understanding of Brain and Neural Systems Neural Networks for Speech and Image Processing. London:Century Physics, 1995, 342-358. [94] BISHOP C M. Neural networks for pattern recognition[M]. New York:Oxford University Press, 1995. [95] 顾纪超,李光耀,干年妃,等.基于混合元模型的准最优策略在汽车轻量化中的应用[J].中国机械工程, 2011, 22(16):1997-2000. GU Jichao, LI Guangyao, GAN Nianfei, et al. Application of new optimization method based on quasi-optimization strategy in vehicle lightweight[J]. China Mechanical Engineering, 2011, 22(16):1997-2000. [96] FERREIRA W G, SERPA A L. Ensemble of metamodels:The augmented least squares approach[J]. Structural and Multidisciplinary Optimization, 2016, 53:1019-1046. [97] ACAR E, RAIS-ROHANI M. Ensemble of metamodels with optimized weight factors[J]. Structural and Multidisciplinary Optimization, 2009, 37:279-294. [98] ACAR E. Various approaches for constructing an ensemble of metamodels using local measures[J]. Structural and Multidisciplinary Optimization, 2010, 42:879-896. [99] LIU H, XU S, WANG X, et al. Optimal weighted pointwise ensemble of radial basis functions with different basis functions[J]. AIAA Journal, 2016, 54(10):3117-3133. [100] SANCHEZ E, PINTOS S, QUEIPO N V. Toward an optimal ensemble of kernel-based approximations with engineering applications[J]. Structural and Multidisciplinary Optimization, 2008, 36:247-261. [101] VIANA F A C, HAFTKA R T, STEFFEN V. Multiple surrogates:How cross-validation errors can help us to obtain the best predictor[J]. Structural and Multidisciplinary Optimization, 2009, 39:439-457. [102] ZERPA L E, QUEIPO N V, PINTOS S, et al. An optimization methodology of alkaline-surfactantpolymer flooding processes using field scale numerical simulation and multiple surrogates[J]. Journal of Petroleum Science and Engineering, 2005, 47(3-4):197-208. [103] LEE Y, CHOI D H. Pointwise ensemble of meta-models using V nearest points cross-validation[J]. Structural and Multidisciplinary Optimization, 2014, 50:383-394. [104] QIU H, CHEN L, JIANG C, et al. Ensemble of surrogate models using sign based cross validation error[C]//2017 IEEE 21st International Conference on Computer Supported Cooperative Work in Design (CSCWD). Wellington:International Conference on Computer Supported Cooperative Work in Design (CSCWD), 2017, 526-531. [105] ZHANG J, YUE X, QIU J, et al. A unified ensemble of surrogates with global and local measures for global metamodelling[J]. Engineering Optimization, 2021, 53(3):474-495. [106] FERNÁNDEZ-GODINO M G, PARK C, KIM N H, et al. Review of multi-fidelity models[EB/OL]. arXiv preprint arXiv:1609.07196, 2016. [107] CHANG K J, HAFTKA R T, GILES G L, et al. Sensitivity-based scaling for approximating structural response[J]. Journal of Aircraft, 1993, 30(2):283-288. [108] VITALI R, HAFTKA R T, SANKAR B V. Multi-fidelity design of stiffened composite panel with a crack[J]. Structural and Multidisciplinary Optimization, 2002, 23:347-356. [109] SUN G, LI G, STONE M, et al. A two-stage multi-fidelity optimization procedure for honeycomb-type cellular materials[J]. Computational Materials Science, 2010, 49(3):500-511. [110] ZHANG Y, KIM N H, PARK C, et al. Multifidelity surrogate based on single linear regression[J]. AIAA Journal, 2018, 56(12):4944-4952. [111] HAN Z H, GÖRTZ S. Hierarchical kriging model for variable-fidelity surrogate modeling[J]. AIAA Journal, 2012, 50(9):1885-1896. [112] HAN Z H, GÖRTZ S, ZIMMERMANN R. Improving variable-fidelity surrogate modeling via gradient-enhanced kriging and a generalized hybrid bridge function[J]. Aerospace Science and Technology, 2013, 25(1):177-189. [113] CAI X, QIU H, GAO L, et al. Metamodeling for high dimensional design problems by multi-fidelity simulations[J]. Structural and Multidisciplinary Optimization, 2017, 56:151-166. [114] KENNEDY M C, O'HAGAN A. Predicting the output from a complex computer code when fast approximations are available[J]. Biometrika, 2000, 87(1):1-13. [115] HUANG L, GAO Z, ZHANG D. Research on multi-fidelity aerodynamic optimization methods[J]. Chinese Journal of Aeronautics, 2013, 26(2):279-286. [116] TOAL D J J, KEANE A J. Efficient multipoint aerodynamic design optimization via cokriging[J]. Journal of Aircraft, 2011, 48(5):1685-1695. [117] THENON A, GERVAIS V, LE RAVALEC M. Multi-fidelity meta-modeling for reservoir engineering-application to history matching[J]. Computational Geosciences, 2016, 20(6):1231-1250. [118] TYAN M, NGUYEN N V, LEE J W. Improving variable-fidelity modelling by exploring global design space and radial basis function networks for aerofoil design[J]. Engineering Optimization, 2015, 47(7):885-908. [119] PELLEGRINI R, IEMMA U, LEOTARDI C, et al. Multi-fidelity adaptive global metamodel of expensive computer simulations[C]//2016 IEEE Congress on Evolutionary Computation (CEC). Vancouver:IEEE Congress on Evolutionary Computation (CEC), 2016, 4444-4451. [120] CAI X, QIU H, GAO L, et al. Adaptive radial-basis-function-based multifidelity metamodeling for expensive black-box problems[J]. AIAA Journal, 2017, 55(7):2424-2436. [121] DURANTIN C, ROUXEL J, DÉSIDÉRI J A, et al. Multifidelity surrogate modeling based on radial basis functions[J]. Structural and Multidisciplinary Optimization, 2017, 56:1061-1075. [122] SONG X, LV L, SUN W, et al. A radial basis function-based multi-fidelity surrogate model:Exploring correlation between high-fidelity and low-fidelity models[J]. Structural and Multidisciplinary Optimization, 2019, 60:965-981. [123] LI K, LIU Y, WANG S, et al. Multi-fidelity data fusion based on gradient-enhanced surrogate modelling method[J]. Journal of Mechanical Design, 2021, 143(12):121704. [124] JACOBS J P, KOZIEL S, OGURTSOV S. Computationally efficient multi-fidelity Bayesian support vector regression modeling of planar antenna input characteristics[J]. IEEE Transactions on Antennas and Propagation, 2012, 61(2):980-984. [125] JACOBS J P, KOZIEL S. Cost-effective global surrogate modeling of planar microwave filters using multi-fidelity bayesian support vector regression[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2014, 24(1):11-17. [126] SHI M, LV L, WANG S, et al. A support vector regression-based multi-fidelity surrogate model[J]. Structural and Multidisciplinary Optimization, 2020, 61:2363-2375. [127] ZADEH P M, TOROPOV V V, WOOD A S. Metamodel-based collaborative optimization framework[J]. Structural and Multidisciplinary Optimization, 2009, 38:103-115. [128] KOZIEL S, BANDLER J W. Multi-fidelity space mapping modeling of microwave devices with double coarse model processing and functional approximation[C]//2009 IEEE MTT-S International Microwave Symposium Digest. Boston:IEEE MTT-S International Microwave Symposium Digest, 2009, 969-972. [129] ZHOU Q, JIANG P, SHAO X, et al. A variable fidelity information fusion method based on radial basis function[J]. Advanced Engineering Informatics, 2017, 32(C):26-39. [130] WANG S, LIU Y, ZHOU Q, et al. A multi-fidelity surrogate model based on moving least squares:Fusing different fidelity data for engineering design[J]. Structural and Multidisciplinary Optimization, 2021, 61:2363-2375. [131] 黎旭.代理模型技术及其在飞行器可靠性优化中的应用研究[D].西安:西北工业大学, 2018. LI Xu. Surrogate model technology and its application to aircraft reliability-based optimization[D]. Xi'an:Northwestern Polytechnical University, 2018. [132] BHOSEKAR A, IERAPETRITOU M. Advances in surrogate based modeling, feasibility analysis, and optimization:A review[J]. Computers and Chemical Engineering, 2018, 108:250-267. [133] YAMAZAKI W, RUMPFKEIL M, MAVRIPLIS D. Design optimization utilizing gradient/hessian enhanced surrogate model[C]//28th AIAA Applied Aerodynamics Conference. Chicago:AIAA Applied Aerodynamics Conference, 2010, 4363. [134] NEFTCI E O, MOSTAFA H, ZENKE F. Surrogate gradient learning in spiking neural networks:Bringing the power of gradient-based optimization to spiking neural networks[J]. IEEE Signal Processing Magazine, 2019, 36(6):51-63. [135] ZHANG Z, CHEN H C, CHENG Q S. Surrogate-assisted quasi-Newton enhanced global optimization of antennas based on a heuristic hypersphere sampling[J]. IEEE Transactions on Antennas and Propagation, 2020, 69(5):2993-2998. [136] 韩忠华. Kriging模型及代理优化算法研究进展[J].航空学报, 2016, 37(11):3197-3225. HAN Zhonghua. Kriging surrogate model and its application to design optimization:A review of recent progress[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11):3197-3225 [137] SUN C, JIN Y, CHENG R, et al. Surrogate-assisted cooperative swarm optimization of high-dimensional expensive problems[J]. IEEE Transactions on Evolutionary Computation, 2017, 21(4):644-660. [138] WANG G G, SHAN S. Review of metamodeling techniques in support of engineering design optimization[C]//ASME 2006 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Philadelphia:IDETC/CIE, 2006, 4255. [139] ZHU P, FENG F, CHEN W, et al. Lightweight design of vehicle parameters under crashworthiness using conservative surrogates[J]. Computers in Industry,2013, 64(3):280-289. [140] SIMPSON T W, BOOKER A J, GHOSH D, et al. Approximation methods in multidisciplinary analysis and optimization:A panel discussion[J]. Structural and Multidisciplinary Optimization, 2004, 27:302-313. [141] LI J, CAI J, QU K. Surrogate-based aerodynamic shape optimization with the active subspace method[J]. Structural and Multidisciplinary Optimization, 2019, 59:403-419. [142] 公茂果,焦李成,杨咚咚,等.进化多目标优化算法研究[J].软件学报, 2009, 20(2):271-289. GONG Maoguo, JIAO Licheng, YANG Dongdong, et al. Research on evolutionary multi-objective optimization algorithms[J]. Journal of Software, 2009, 20(2):271-289. [143] MARLER R T, ARORA J S. Survey of multi-objective optimization methods for engineering[J]. Structural and Multidisciplinary Optimization, 2004, 26:369-395. [144] DÉSIDÉRI J A. Multiple-gradient descent algorithm for pareto-front identification[M]//Modeling, Simulation and Optimization for Science and Technology. Dordrecht:Springer, 2014. [145] DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm:NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2):182-197. [146] GASPAR-CUNHA A, VIEIRA A. A multi-objective evolutionary algorithm using neural networks to approximate fitness evaluations[J]. International Journal of Computers, Systems and Signals, 2005, 6(1):18-36. [147] EMMERICH M T M, GIANNAKOGLOU K C, NAUJOKS B. Single-and multiobjective evolutionary optimization assisted by Gaussian random field metamodels[J]. IEEE Transactions on Evolutionary Computation, 2006, 10(4):421-439. [148] KNOWLES J. ParEGO:A hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems[J]. IEEE Transactions on Evolutionary Computation, 2006, 10(1):50-66. [149] PONWEISER W, WAGNER T, BIERMANN D, et al. Multiobjective optimization on a limited budget of evaluations using model-assisted S-metric selection[C]//International Conference on Parallel Problem Solving from Nature. Berlin:Springer, Berlin, Heidelberg, 2008, 784-794. [150] COUCKUYT I, DESCHRIJVER D, DHAENE T. Fast calculation of multiobjective probability of improvement and expected improvement criteria for Pareto optimization[J]. Journal of Global Optimization, 2014, 60(3):575-594. [151] FENG Z, ZHANG Q, ZHANG Q, et al. A multiobjective optimization based framework to balance the global exploration and local exploitation in expensive optimization[J]. Journal of Global Optimization, 2015, 61(4):677-694. [152] MARTÍNEZ-FRUTOS J, HERRERO-PÉREZ D. Kriging-based infill sampling criterion for constraint handling in multi-objective optimization[J]. Journal of Global Optimization, 2016, 64(1):97-115. [153] JEONG S,MINEMURA Y,OBAYASHI S. Optimization of combustion chamber for diesel engine using kriging model[J]. Journal of Fluid Science and Technology, 2006, 1(2):138-146. [154] SYBERFELDT A, GRIMM H, NG A, et al. A parallel surrogate-assisted multi-objective evolutionary algorithm for computationally expensive optimization problems[C]//2008 IEEE Congress on Evolutionary Computation. Hong Kong, IEEE World Congress on Computational Intelligence, 2008, 3177-3184. [155] ZHANG Q, LIU W, TSANG E, et al. Expensive multiobjective optimization by MOEA/D with Gaussian process model[J]. IEEE Transactions on Evolutionary Computation, 2009, 14(3):456-474. [156] ZHANG Q, LI H. MOEA/D:A multiobjective evolutionary algorithm based on decomposition[J]. IEEE Transactions on Evolutionary Computation, 2007, 11(6):712-731. [157] AKHTAR T, SHOEMAKER C A. Efficient multi-objective optimization through population-based parallel surrogate search[EB/OL]. arXiv preprint arXiv:1903.02167, 2019. [158] SRINIVAS N, DEB K. Muiltiobjective optimization using nondominated sorting in genetic algorithms[J]. Evolutionary Computation, 1994, 2(3):221-248. [159] PEI J, WANG W, YUAN S. Multi-point optimization on meridional shape of a centrifugal pump impeller for performance improvement[J]. Journal of Mechanical Science and Technology, 2016, 30(11):4949-4960. [160] SHIM H S, KIM K Y, CHOI Y S. Three-objective optimization of a centrifugal pump to reduce flow recirculation and cavitation[J]. Journal of Fluids Engineering, 2018, 140(9):091202. [161] CHOI S, ALONSO J J, CHUNG H S. Design of a low-boom supersonic business jet using evolutionary algorithms and an adaptive unstructured mesh method[C]//45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Palm Springs:AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 2004, 1758. [162] NAIN P K S, DEB K. A multi-objective optimization procedure with successive approximate models[J]. KanGAL Report Number 2005002, Indian Institute of Technology, Kanpur, 2005. http://www.iitk.ac.in/kangal/papers/k2005002.pdf. [163] HUSAIN A, KIM K Y. Enhanced multi-objective optimization of a microchannel heat sink through evolutionary algorithm coupled with multiple surrogate models[J]. Applied Thermal Engineering, 2010, 30(13):1683-1691. [164] CHEN S, ZHANG J. Multi-objective optimization of interior noise of an automotive body based on different surrogate models and NSGA-II[J]. SAE Technical Paper, 2018, 1:0146. |
[1] | 程洪鑫, 李璐祎, 周长聪. 基于Kriging模型和代理抽样的分布参数不确定性灵敏度分析方法[J]. 机械工程学报, 2024, 60(8): 370-383. |
[2] | 孟原, 史宝军, 张德权. Kriging-高维代理模型建模方法研究与改进[J]. 机械工程学报, 2024, 60(5): 249-263. |
[3] | 俞水, 吴晓, 郭鹏, 王志华. 基于首次穿越PDF自适应估计的时变可靠性分析方法[J]. 机械工程学报, 2024, 60(5): 264-275. |
[4] | 王旭, 姜兴宇, 杨国哲, 孙猛, 于沈弘, 毕凯航, 赵日铮, 刘伟军. 基于PSO-SSA的激光清洗装备人机界面布局优化研究[J]. 机械工程学报, 2024, 60(20): 372-387. |
[5] | 赵峰, 胡伟飞, 李光, 邓晓豫, 刘振宇, 郭云飞, 谭建荣. 基于混合指标自适应采样代理模型的多目标优化设计方法[J]. 机械工程学报, 2024, 60(13): 81-91. |
[6] | 胡伟飞, 廖家乐, 郭云飞, 鄢继铨, 李光, 岳海峰, 谭建荣. 基于物理信息神经网络的时变可靠性分析方法[J]. 机械工程学报, 2024, 60(13): 141-153. |
[7] | 范小宁, 王凯, 余畅. 基于约束边界抽样的起重机金属结构可靠性优化[J]. 机械工程学报, 2023, 59(8): 288-298. |
[8] | 李春明, 孙晓霞, 张涛, 舒成龙, 张帅, 宋学官. 基于组合代理模型的变海拔工况车辆动力总成流动性能优化[J]. 机械工程学报, 2023, 59(4): 135-144. |
[9] | 孔雪峰, 潘骏, 钱萍, 魏义敏, 陈文华. 机械产品多变量相依退化建模方法研究综述[J]. 机械工程学报, 2023, 59(20): 470-488. |
[10] | 何庆, 利璐, 李晨钟, 王平, 谢斯. 基于Kriging模型的在役高速列车悬挂参数近似贝叶斯估计[J]. 机械工程学报, 2023, 59(12): 139-148. |
[11] | 张文鑫, 吕震宙. 一种新的自适应Kriging法停止准则及其在涡轮盘疲劳寿命可靠性中的应用[J]. 机械工程学报, 2022, 58(6): 263-273. |
[12] | 朱林, 王鹏, 贾民平, 许飞云. 基于响应面修正敏度模型的结构可靠性影响因素分析方法[J]. 机械工程学报, 2022, 58(22): 160-167. |
[13] | 杨超, 叶伟, 陈巧红. 并联机构敏感性分析和多目标优化设计方法[J]. 机械工程学报, 2022, 58(19): 229-241. |
[14] | 陈炜镒, 胡伟飞, 方健豪, 姜宏伟, 刘振宇, 谭建荣. 考虑雨滴侵蚀的风力发电机叶片涂层疲劳寿命优化设计方法[J]. 机械工程学报, 2022, 58(17): 2-15. |
[15] | 何西旺, 杨亮亮, 冉仁杰, 朱发文, 宋学官. 基于多评价标准的代理模型综合比较研究[J]. 机械工程学报, 2022, 58(16): 403-419. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 337
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 444
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||