机械工程学报 ›› 2024, Vol. 60 ›› Issue (11): 62-73.doi: 10.3901/JME.2024.11.062
• 特邀专栏:复杂装备智能设计理论与方法 • 上一篇 下一篇
徐文琳, 彭羽, 何智成, 姜潮
收稿日期:
2023-05-06
修回日期:
2023-12-07
出版日期:
2024-06-05
发布日期:
2024-08-02
作者简介:
徐文琳,女,2000年出生。主要研究方向为运动学拓扑优化。E-mail:xuwenlin@hnu.edu.cn基金资助:
XU Wenlin, PENG Yu, HE Zhicheng, JIANG Chao
Received:
2023-05-06
Revised:
2023-12-07
Online:
2024-06-05
Published:
2024-08-02
摘要: 复杂路径规划的机构拓扑构型设计一直是行业的难题。目前,基于弹簧连接刚性块模型(Spring-connected rigid block mode,SBM)的拓扑优化算法,以功传递效率为目标函数,可以实现了多精度点路径拓扑构型设计反求。然而,传统SBM模型进行机构设计时,存在迭代结果构型不清晰、收敛速度低、复杂路径机构合成能力较差等问题。因此,在SBM模型的基础上提出了复杂路径规划的机构分区运动学拓扑构型设计方法。该方法首先对模型的弹簧刚度进行二值化判定,然后根据刚性块的运动情况以及约束度进行浮动块判定和刚度清理,最后再使用邻接矩阵图论的方法获得刚性块组的划分以及机构分区,从而实现大梯度变化复杂路径下对机构拓扑构型设计。通过实际的算例表明,面向复杂路径规划的机构分区运动学拓扑构型设计方法在保证路径精度的前提下,能显著提升计算效率与适应复杂路径规划的能力。
中图分类号:
徐文琳, 彭羽, 何智成, 姜潮. 复杂路径规划的机构分区运动学拓扑构型设计[J]. 机械工程学报, 2024, 60(11): 62-73.
XU Wenlin, PENG Yu, HE Zhicheng, JIANG Chao. Kinematic Topological Configuration Design of Mechanism Partitions for Complex Path Planning[J]. Journal of Mechanical Engineering, 2024, 60(11): 62-73.
[1] 崔睿,陈殿生,苏鹏,等.骨折复位及畸形矫正机器人的轨迹规划研究进展[J].机械工程学报,2022,58(13):1-21.CUI Rui,CHEN Diansheng,SU Peng,et al.Research progress on trajectory planning of fracture reduction and deformity correction robot[J].Chinese Journal of Mechanical Engineering,2022,58(13):1-21. [2] 夏纯,张海峰,李秦川,等.基于等效运动链的并联机器人运动学标定方法[J].机械工程学报,2022,58(14):71-84.XIA Chun,ZHANG Haifeng,LI Qinchuan,et al.Novel kinematic calibration method of parallel mechanisms using the equivalent kinematic chains[J].Journal of Mechanical Engineering,2022,58(14):71-84. [3] 毛江,朱小飞,李立成.可用于多连杆悬架的并联机构运动学分析[J].机械传动,2022,46:140-145,158.MAO Jiang,ZHU Xiaofei,LI Licheng.Kinematic analysis of parallel mechanism for multi-link suspension[J].Journal of Mechanical Transmission,2022,46:140-145,158. [4] 汪步云,彭稳,梁艺,等.全地形移动机器人悬架机构设计及特性分析[J].机械工程学报,2022,58(9):71-86.WANG Buyun,PENG Wen,LIANG Yi,et al.Characteristics analysis and optimization design of suspension mechanism of all-terrain mobile robot[J].Journal of Mechanical Engineering,2022,58(9):71-86. [5] WEI Chaoran,WU Jianxu,SUN Jing,et al.Reconfigurable design of a passive locomotion closed-chain multi-legged platform for terrain adaptability[J].Mechanism and Machine Theory,2022,174:771-791. [6] 王君,牛克佳,聂良益,等.单自由度复杂平面连杆机构的奇异性分析[J].中国机械工程,2018,29:36-40.WANG Jun,NIU Kejia,NIE Liangyi,et al.Singularity analysis of single degree-of-freedom complex planar linkages[J].China Mechanical Engineering,2018,29:36-40. [7] 李永泉,郑天宇,江洪生,等.基于图谱法的新型运动分岔并联机构型综合[J].机械工程学报,2022,58(23):1-17.LI Yongquan,ZHENG Tianyu,JIANG Hongsheng,et al.Type synthesis of new kinematic bifurcation parallel mechanism based on atlas method[J].Journal of Mechanical Engineering,2022,58(23):1-17. [8] 顾德裕.实现单分支连杆轨迹综合的长方体-牛顿混合算法[J].机械设计,2008,25:24-26.GU Deyu.A cuboid-Newtonian hybrid algorithm that realizes single-branch linkage trajectory synthesis[J].Journal of Machinedesing,2008,25:24-26. [9] ARMILLOTTA A.Force analysis as a support to computer-aided tolerancing of planar linkage[J].Mechanism and Machine Theory,2015,93:11-25. [10] KAPSALYAMOV A,HUSSAIN S,BROWN Nat,et al.Synthesis of a six-bar mechanism for generating knee and ankle motion trajectories using deep generative neural network[J].Engineering Applications of Artificial Intelligence,2023,117:17-26. [11] 李学刚,张丽娟,魏世民,等.Stephenson-Ⅲ型平面六杆机构轨迹综合的代数求解[J].工程科学与技术,2021,53:155-161.LI Xuegang,ZHANG Lijuan,WEI Shimin,et al.Algebraic solution for path synthesis of planar stephenson-III six-bar linkage[J].Advanced Engineering Sciences,2021,53:155-161. [12] KIM Y Y,JANG G-W,PARK J H,et al.Automatic synthesis of a planar linkage mechanism with revolute joints by using spring-connected rigid block models[J].Journal of Mechanical Design,2007,129(9):930-940. [13] 李宽,赵登峰,曾国英.连杆曲线形态特征分析的奇点方法[J].机械设计与制造,2017(S1):24-27.LI Kuan,ZHAO Dengfeng,ZENG Guoying,et al.Singular point method for analysis of morphological characteristics of curves of linkage mechanism[J].Machinery Design&Manufacture,2017(S1):24-27. [14] 姜庆昌,郭士清,王冬.连杆曲线阶数及其生成机构的关系研究[J].机械工程师,2008(7):33-34.JIANG Qingchang,GUO Shiqing,WANG Dong,et al.Study on the relation between exponent number of mechanical linkage curve and its corresponding mechanism[J].Mechanical Engineer,2008(7):33-34. [15] JUN NAM S,JANG G W,YOUNG KIM Y.The spring-connected rigid block model based automatic synthesis of planar linkage mechanisms:Numerical issues and remedies[J].Journal of Mechanical Design,2012,134(5):15-25. [16] YIM N H,LEE J,KIM J,et al.Big data approach for the simultaneous determination of the topology and end-effector location of a planar linkage mechanism[J].Mechanism and Machine Theory,2021,163:147-166. [17] HAN S M,IN KIM S,KIM Y.Topology optimization of planar linkage mechanisms for path generation without prescribed timing[J].Structural and Multidisciplinary Optimization,2017,56(3):501-517. [18] SIGMUND O.A 99 line topology optimization code written in Matlab[J].Structural and Multidisciplinary Optimization,2014,21(2):120-127. [19] 卢文娟,张立杰,谢平,等.以对过约束的认识看自由度分析的历史发展[J].机械工程学报,2017,53(15):81-92.LU Wenjuan,ZHANG Lijie,XIE Ping,et al.Review on the mobility development history with the understanding of overconstraints[J].Journal of Mechanical Engineering,2017,53(15):81-92. [20] SVANBERG K.A class of globally convergent optimization methods based on conservative convex separable approximations[J].SIAM Journal on Optimization,2002,12(2):555-573. [21] KANG S W,KIM S I,KIM Y.Topology optimization of planar linkage systems involving general joint types[J].Mechanism and Machine Theory,2016,104:130-160. [22] YU J,HAN S M,KIM Y.Simultaneous shape and topology optimization of planar linkage mechanisms based on the spring-connected rigid block model[J].Journal of Mechanical Design,2020,142(1):16-31. [23] SCHEFFLER R.On the recognition of search trees generated by BFS and DFS[J].Theoretical Computer Science,2022,936:116-128. [24] HAN S M,KIM Y.Topology optimization of linkage mechanisms simultaneously considering both kinematic and compliance characteristics[J].Journal of Mechanical Design,2021,143(6):102-119. |
[1] | 赵欣, 黄金杰. 基于RSM-RVEA的FDM增材制造工艺参数优化方法[J]. 机械工程学报, 2024, 60(19): 277-297. |
[2] | 于金须, 闫建华, 王孝冉, 张立杰, 谢平, 李永泉. 一种人机共融的手指外骨骼机器人设计与验证[J]. 机械工程学报, 2024, 60(17): 102-110. |
[3] | 牟德君, 陈先岭, 常雪龙, 胡波. (2-UPU+SPR)+(2-UPU+RPS)非对称混联机构末端约束及自由度分析[J]. 机械工程学报, 2024, 60(17): 272-282. |
[4] | 于金须, 闫建华, 肖俊明, 李永泉, 谢平, 张立杰. 基于医工结合的指关节运动学模型建立与验证[J]. 机械工程学报, 2024, 60(15): 149-159. |
[5] | 吴震, 李秦川, 叶伟. 基于固有频率的运动冗余并联机构位置逆解优选方法[J]. 机械工程学报, 2024, 60(13): 297-307. |
[6] | 刘伟, 刘宏昭. 非结式消元7R双环球面机构运动学位移分析[J]. 机械工程学报, 2024, 60(7): 45-53. |
[7] | 畅博彦, 韩芳孝, 周杨, 金国光. 面向精梳任务的高速变胞机构冲击动力学研究[J]. 机械工程学报, 2024, 60(7): 54-65. |
[8] | 张雷雷, 赵延治, 赵铁石. 并联机构瞬轴面研究进展[J]. 机械工程学报, 2023, 59(21): 131-146. |
[9] | 姚鹏飞, 吕胜男, 张武翔, 丁希仑. 基于正四棱台Bricard单元的双环可展开天线机构构型设计[J]. 机械工程学报, 2023, 59(21): 147-156. |
[10] | 陆晨浩, 陈耀, 何若琪, 范维莹, 冯健. 基于深度神经网络的四折痕锥形折纸结构设计[J]. 机械工程学报, 2023, 59(21): 167-176. |
[11] | 占金青, 晏家坤, 蒲圣鑫, 朱本亮, 刘敏. 基于等几何分析的电热驱动柔顺机构拓扑优化设计[J]. 机械工程学报, 2023, 59(21): 177-187. |
[12] | 刘辛军, 于靖军, 谢福贵, 赵慧婵, 孟齐志. 行为机构学与高端装备创新设计[J]. 机械工程学报, 2023, 59(19): 202-212. |
[13] | 李海虹, 董晋安, 郭山国, 刘志奇. 动/静平台非一致型并联机构构型分析及设计方法[J]. 机械工程学报, 2023, 59(17): 116-125. |
[14] | 杨逸波, 汪满新. R(RPS&RP)&2-UPS并联机构位置精度可靠性建模与分析[J]. 机械工程学报, 2023, 59(15): 62-72. |
[15] | 贾广鲁, 李兵, 戴建生. 变胞折块机构:圆柱体/圆锥体切割链接而成的变胞折块机构设计与运动学分析[J]. 机械工程学报, 2023, 59(13): 24-35. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||