机械工程学报 ›› 2024, Vol. 60 ›› Issue (5): 1-18.doi: 10.3901/JME.2024.05.001
张立元1, 杨锦波1, 李澳1, 杨庆凯2, 徐光魁3
收稿日期:
2023-05-17
修回日期:
2023-11-20
出版日期:
2024-03-05
发布日期:
2024-05-30
通讯作者:
张立元,男,1986年出生,博士,教授,博士研究生导师。主要研究方向为仿生智能机械系统设计、可折展空间结构设计、力学超结构/超材料构建、活性软材料多级结构建模。E-mail:zhangly@ustb.edu.cn
作者简介:
杨锦波,男,1998年出生,硕士研究生。主要研究方向为张拉整体结构。E-mail:yangjinbo98@163.com
基金资助:
ZHANG Liyuan1, YANG Jinbo1, LI Ao1, YANG Qingkai2, XU Guangkui3
Received:
2023-05-17
Revised:
2023-11-20
Online:
2024-03-05
Published:
2024-05-30
摘要: 随着科学探索和工程实践对无人化需求的持续提升,机器人已成为航空航天、工业生产等领域必不可少的关键装备,兼具构型柔性和承载刚度的张拉整体球形机器人在深空探测、灾害救援等非结构化应用场景备受关注。在简述张拉整体基本理论的基础上,围绕张拉整体球形机器人的初始构型设计与运动构型控制,重点概述了此类机器人的设计参数与性能参数,运动模态及基本原理,传统与新兴控制方案,模拟环境与仿真技术,以及现有样机形式等多方面的研究现状与发展趋势,为开发张拉整体球形机器人的姿态控制技术提供理论参考。
中图分类号:
张立元, 杨锦波, 李澳, 杨庆凯, 徐光魁. 张拉整体球形机器人构型设计与控制研究进展[J]. 机械工程学报, 2024, 60(5): 1-18.
ZHANG Liyuan, YANG Jinbo, LI Ao, YANG Qingkai, XU Guangkui. Review on Configuration Design and Control of Tensegrity Spherical Robots[J]. Journal of Mechanical Engineering, 2024, 60(5): 1-18.
[1] 习近平. 不断做强做优做大我国数字经济[J]. 求是, 2022(2):4-8. XI Jinping. Building up the strength,quality,and size of China’s digital economy[J]. Qiushi,2022(2):4-8. [2] 工业和信息化部. 《“十四五”机器人产业发展规划》解读[J]. 自动化博览,2022,39(3):14-15. Ministry of Industry and Information Technology. Interpretation of the “14th Five Year Plan” robot industry development plan[J]. Automation Panorama,2022,39(3):14-15. [3] 郭倩. 工信部将加快实施“机器人+”应用行动[N]. 2022-08-09(004). GUO Qian. The ministry of industry and information technology will accelerate the implementation of the “robot+” application action[N]. Economic Information Daily,2022-08-09(004). [4] DWARACHERLA V,THAKAR S,VACHHANI L,et al. Motion planning for point-to-point navigation of spherical robot using position feedback[J]. IEEE-ASME Transactions on Mechatronics,2019,24(5):2416-2426. [5] FULLER R B. Tensile integrity structures:America,ES19600260556[P]. 1960-11-16. [6] EMMERICH D G. Emmerich on self-tensioning structures[J]. International Journal of Space Structures,1996,11(1-2):29-36. [7] SADAO S. Fuller on tensegrity[J]. International Journal of Space Structures,1996,11(1-2):37-42. [8] SNELSON K. Snelson on the tensegrity invention[J]. International Journal of Space Structures,1996,11(1-2):43-48. [9] PUGH A. An introduction to tensegrity[M]. Oakland:Univ. of California Press,1976. [10] GEIGER D H,STEFANIUK A,CHEN D. The design and construction of two cable domes for the Korean Olympics[C]// Proceedings of the IASS Symposium on Shells,Membranes and Space Frames. Amsterdam:Elsevier Science Publishers BV,1986:265-272. [11] SKELTON R E,ADHIKARI R,PINAUD J P,et al. An introduction to the mechanics of tensegrity structures[C]// Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No. 01CH37228). ORLANDO:IEEE,2001:4254-4259. [12] MOTRO R. Tensegrity:structural systems for the future[M]. Amsterdam:Elsevier,2003. [13] LI Y,FENG X Q,CAO Y P,et al. Constructing tensegrity structures from one-bar elementary cells[J]. Proceedings of the Royal Society a-Mathematical Physical and Engineering Sciences,2010,466(2113):45-61. [14] INGBER D E. Tensegrity:the architectural basis of cellular mechanotransduction[J]. Annual Review of Physiology,1997,59:575-599. [15] WANG N,BUTLER J P,INGBER D E. Mechanotransduction across the cell surface and through the cytoskeleton[J]. Science (New York,NY),1993,260(5111):1124-1127. [16] HANG J T,XU G K. Stiffening and softening in the power-law rheological behaviors of cells[J]. Journal of the Mechanics and Physics of Solids,2022,167:104989. [17] QIN Y,LI Y,ZHANG L Y,et al. Stochastic fluctuation-induced cell polarization on elastic substrates:a cytoskeleton-based mechanical model[J]. Journal of the Mechanics and Physics of Solids,2020,137:103872. [18] YIN X,WANG B C,LIU L,et al. A structural stiffness matrix-based computational mechanics method of epithelial monolayers[J]. Journal of the Mechanics and Physics of Solids,2022,169:105077. [19] LIU Y,CHENG J,YANG H,et al. Rotational constraint contributes to collective cell durotaxis[J]. Applied Physics Letters,2020,117(21):213702. [20] LIU Y,XU G K,ZHANG L Y,et al. Stress-driven cell extrusion can maintain homeostatic cell density in response to overcrowding[J]. Soft Matter,2019,15(42):8441-8449. [21] XU G K,FENG X Q,GAO H. Orientations of cells on compliant substrates under biaxial stretches:a theoretical Study[J]. Biophysical Journal,2018,114(3):701-710. [22] 耿金嵩. 张拉式可展太空舱段骨架结构设计与分析[D]. 哈尔滨:哈尔滨工程大学,2018. GENG Jinsong. Design and analysis of tension-type spacecabin skeleton structure[D]. Harbin:Harbin Engineering University,2018. [23] 吴文友. 可展开张拉整体结构天线形态综合及热分析[D]. 西安:西安电子科技大学,2012. WU Wenyou. Configuration synthesis and thermal analysis of deployable tensegrity antenna[D]. Xi’an:Xi’an University of Electronic Science and Technology,2012. [24] 周一一,陈联盟. 浅谈张拉整体结构发展的历史与趋势[J]. 空间结构,2013,19(4):11-17. ZHOU Yiyi,CHEN Lianmeng. Development of tensegrity structure:history and tendency[J]. Spatial Structures,2013,19(4):11-17. [25] LIU S,LI Q,WANG P,et al. Kinematic and static analysis of a novel tensegrity robot[J]. Mechanism and Machine Theory,2020,149:103788. [26] MOORED K W,KEMP T H,HOULE N E,et al. Analytical predictions,optimization,and design of a tensegrity-based artificial pectoral fin[J]. International Journal of Solids and Structures,2011,48(22-23):3142-3159. [27] ALI N B H,RHODE-BARBARIGOS L,SMITH I F C. Analysis of clustered tensegrity structures using a modified dynamic relaxation algorithm[J]. International Journal of Solids and Structures,2011,48(5):637-647. [28] MELNYK A,PITTI A. Synergistic control of a multi-segments vertebral column robot based on tensegrity for postural balance[J]. Advanced Robotics,2018,32(15):850-864. [29] ABOURACHID A,BöHMER C,WENGER P,et al. Modelling,design and control of a bird neck using tensegrity mechanisms[C]// ICRA'2019 Worskhop on Tensegrity. Montreal:ICRA,2019:1-4. [30] CHEN B,JIANG H. Swimming performance of a tensegrity robotic fish[J]. Soft Robotics,2019,6(4):520-531. [31] CHEN L H,CERA B,ZHU E L,et al. Inclined surface locomotion strategies for spherical tensegrity robots[C]// 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),Vancouver:IEEE,2017:4976-4981. [32] SABELHAUS A P,BRUCE J,CALUWAERTS K,et al. System sesign and locomotion of SUPERball,an untethered tensegrity robot[C]// 2015 IEEE International Conference on Robotics and Automation (ICRA). Seattle:IEEE,2015:2867-2873. [33] SNELSON K D. Continuous tension,discontinuous compression structures[Z]. Google Patents. 1965 [34] 陈晓光,罗尧治. 张拉整体单元找形问题研究[J]. 空间结构,2003,9(1):35-39. CHEN Xiaoguang,LUO Yaozhi. Study on form finding problems of tensegrity elements[J]. Spatial Structures,2003,9(1):35-39. [35] EHARA S,KANNO Y. Topology design of tensegrity structures via mixed integer programming[J]. International Journal of Solids and Structures,2010,47(5):571-579. [36] KANNO Y. Topology optimization of tensegrity structures under compliance constraint:a mixed integer linear programming approach[J]. Optimization and Engineering,2013,14(1):61-96. [37] KANNO Y. Topology optimization of tensegrity structures under self-weight loads[J]. Journal of the Operations Research Society of Japan,2012,55(2):125-145. [38] KANNO Y. Exploring new tensegrity structures via mixed integer programming[J]. Structural and Multidisciplinary Optimization,2013,48(1):95-114. [39] XU X,WANG Y,LUO Y. General approach for topology-finding of tensegrity structures[J]. Journal of Structural Engineering,2016,142(10):04016061. [40] 王雅峰,许贤,罗尧治. 张拉整体结构拓扑找形研究[C]// 第十六届空间结构学术会议论文集. 杭州,2016:425-432. WANG Yafeng,XU Xian,LUO Yaozhi. Study on topological form finding of tensegrity structure[C]// Proceedings of the 16th Academic Conference on Spatial Structures. Hangzhou,2016:425-432. [41] XU X,WANG Y,LUO Y. An improved multi-objective topology optimization approach for tensegrity structures[J]. Advances in Structural Engineering,2018,21(1):59-70. [42] SU Y,ZHANG J,OHSAKI M,et al. Topology optimization and shape design method for large-span tensegrity structures with reciprocal struts[J]. International Journal of Solids and Structures,2020,206:9-22. [43] ZHANG L Y,LI Y,XU G K,et al. Enumeration screening method for the design of simple polygonal tensegrities[J]. Proceedings of the Royal Society a-Mathematical Physical and Engineering Sciences,2019,475(2228):20180812. [44] YIN X,LI Y,ZHANG L Y,et al. Constructing various simple polygonal tensegrities by directly or recursively adding bars[J]. Composite Structures,2020,234:111693. [45] MALIK P K,GUHA A,SESHU P. Topology identification for super-stable tensegrity structure from a given number of nodes in two dimensional space[J]. Mechanics Research Communications,2022,119:103810. [46] ALOUI O,FLORES J,ORDEN D,et al. Cellular morphogenesis of three-dimensional tensegrity structures[J]. Computer Methods in Applied Mechanics and Engineering,2019,346:85-108. [47] ALOUI O,ORDEN D,RHODE-BARBARIGOS L. Generation of planar tensegrity structures through cellular multiplication[J]. Applied Mathematical Modelling,2018,64:71-92. [48] ZHANG L Y,ZHAO H P,FENG X Q. Constructing large-scale tensegrity structures with bar-bar connection using prismatic elementary cells[J]. Archive of Applied Mechanics,2015,85(3):383-394. [49] ZHANG L Y,LI S X,ZHU S X,et al. Automatically assembled large-scale tensegrities by truncated regular polyhedral and prismatic elementary cells[J]. Composite Structures,2018,184:30-40. [50] 朱世新,张立元,李松雪,等. 数字状张拉整体结构的构型设计与力学性能模拟[J]. 力学学报,2018,50(4):798-809. ZHU Shixin,ZHANG Liyuan,LI Songxue,et al. Number-shaped tensegrity structures:configuration design and mechanical properties analysis[J] Theoretical and Applied Mechanics,2018,50(4):798-809. [51] ZHANG L Y,ZHU S X,LI S X,et al. Analytical form-finding of tensegrities using determinant of force-density matrix[J]. Composite Structures,2018,189:87-98. [52] MA S,CHEN M,PENG Z,et al. The equilibrium and form-finding of general tensegrity systems with rigid bodies[J]. Engineering Structures,2022,266:114618. [53] ZHANG L Y,ZHU S X,CHEN X F,et al. Analytical form-finding for highly symmetric and super-stable configurations of rhombic truncated regular polyhedral tensegrities[J]. Journal of Applied Mechanics- Transactions of the ASME,2019,86(3):031006. [54] 蔡建国,冯健. 张拉整体结构的多平衡态研究[J]. 土木工程学报,2014,47(10):32-39. CAI Jianguo,FENG Jian. Study on multi equilibrium of tensegrity structure[J]. China Civil Engineering Journal,2014(10):32-39. [55] DOMER B,FEST E,LALIT V,et al. Combining dynamic relaxation method with artificial neural networks to enhance simulation of tensegrity structures[J]. Journal of Structural Engineering-Asce,2003,129(5):672-681. [56] PANIGRAHI R,GUPTA A,BHALLA S,et al. Application of artificial neural network for form finding of tensegrity structures[C]// Proceedings of the 2nd Indian International Conference on Artificial Intelligence. Pune:IICAI. 2005:1950-1962. [57] ZALYAEV E,SAVIN S,VOROCHAEVA L. Machine learning approach for tensegrity form finding:Feature extraction problem[C]// 20204th Scientific School on Dynamics of Complex Networks and their Application in Intellectual Robotics (DCNAIR). Innopolis:IEEE,2020:265-268. [58] LEE S,LIEU Q X,VO T P,et al. Deep neural networks for form-finding of tensegrity structures[J]. Mathematics,2022,10(11):1822. [59] SUN Z,ZHAO L,LIU K,et al. An advanced form-finding of tensegrity structures aided with noise-tolerant zeroing neural network[J]. Neural Computing & Applications,2022,34(8):6053-6066. [60] XU X,LUO Y. Multistable tensegrity structures[J]. Journal of Structural Engineering-Asce,2011,137(1):117-123. [61] MICHELETTI A. Bistable regimes in an elastic tensegrity system[J]. Proceedings of the Royal Society a-Mathematical Physical and Engineering Sciences,2013,469(2154):20130052. [62] BONI C,REIS P M,ROYER-CARFAGNI G. Flexural-tensegrity snapping tails for bio-inspired propulsion in fluids[J]. Extreme Mechanics Letters,2022,56:101853. [63] SUN J,ZHANG S,WANG Z,et al. Design of a new foot structure based on the mast-type octahedral tensegrity structure[J]. Mechanism and Machine Theory,2022,177:105016. [64] MOTRO R,NAJARI S,JOUANNA P. Static and dynamic analysis of tensegrity systems[C]// Shell and Spatial Structures:Computational Aspects:Proceedings of the International Symposium July 1986,Leuven,Belgium. Leuven:Springer Berlin Heidelberg,1987:270-279. [65] 许贤,蔡晖映,孙凤先,等. 基于线性规划的张拉整体结构位移优化控制[J]. 浙江大学学报,2017,51(11):2093-2100. XU Xian,CAI Huiying,SUN Fengxian,et al. Optimal displacement control of tensegrity structures based on linear programming[J]. Journal of Zhejiang University,2017,51(11):2093-2100. [66] MA S,CHEN M,SKELTON R E. Tensegrity system dynamics based on finite element method[J]. Composite Structures,2022,280:114838. [67] MA S,CHEN M,SKELTON R E. Dynamics and control of clustered tensegrity systems[J]. Engineering Structures,2022,264:114391. [68] LI F,PENG H,YANG H,et al. A symplectic kinodynamic planning method for cable-driven tensegrity manipulators in a dynamic environment[J]. Nonlinear Dynamics,2021,106(4):2919-2941. [69] YANG S. Deployment of a foldable tensegrity-membrane system via configuration transitions using linear parameter-varying control[J]. Structural Control & Health Monitoring,2021,28(7):e2739. [70] GUO Y,PENG H. Full-actuation rolling locomotion with tensegrity robot via deep reinforcement learning[C]// 20215th International Conference on Robotics and Automation Sciences (ICRAS). Wuhan:IEEE,2021:51-55. [71] WANG K,AANJANEYA M,BEKRIS K,et al. Sim2sim evaluation of a novel data-efficient differentiable physics engine for tensegrity robots[C]// 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Prague:IEEE,2021:1694-1701. [72] YIN X,ZHANG S,XU G K,et al. Bandgap characteristics of a tensegrity metamaterial chain with defects[J]. Extreme Mechanics Letters,2020,36:100668. [73] ZHANG L Y,YIN X,YANG J,et al. Multilevel structural defects-induced elastic wave tunability and localization of a tensegrity metamaterial[J]. Composites Science and Technology,2021,207:108740. [74] 杜汶娟,马书根,李斌,等. 可变结构体机器人形变状态找寻及运动方向预测方法[J]. 科学通报,2013,58(Suppl. 2):97-103. DU Wenjuan,MA Shugen,LI Bin,et al. Method to seek the deformed shape and to find the rolling direction of tensegrity robots[J]. Chinese Science Bulletin,2013,58(Suppl. 2):97-103. [75] 杜汶娟,马书根,李斌,等. 可变结构体机器人滚动步态参数优化[J]. 机械工程学报,2016,52(17):127-136. DU Wenjuan,MA Shugen,LI Bin,et al. Parameter optimization for rolling motion of structure variable robots[J]. Journal of Mechanical Engineering,2016,52(17):127-136. [76] 赵凯凯,常健,李斌,等. 张拉整体机器人建模及静态坡面研究[J]. 高技术通讯,2020,30(5):501-507. ZHAO Kaikai,CHANG Jian,LI Bin,et al. Research on modeling and static slope of tensioning integral robot[J]. Chinese High Technology Letters,2020,30(5):501-507. [77] KIM K,CHEN L H,CERA B,et al. Hopping and rolling locomotion with spherical tensegrity robots[C]// 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Daejeon:IEEE,2016:4369-4376. [78] 袁李. 基于四杆张拉整体结构的机器人研究[D]. 哈尔滨:哈尔滨工程大学,2016. YUAN Li. The robot research based on four bars tensegrity structure[D]. Harbin:Harbin Engineering University,2016. [79] MINTCHEV S,ZAPPETTI D,WILLEMIN J,et al. A soft robot for random exploration of terrestrial environments[C]// 2018 IEEE International Conference on Robotics and Automation (ICRA). Brisbane:IEEE,2018:7492-7497. [80] KOIZUMI Y,SHIBATA M,HIRAI S,et al. Rolling tensegrity driven by pneumatic soft actuators[C]// 2012 IEEE International Conference on Robotics and Automation. Saint Paul:IEEE,2012:1988-1993. [81] HANAOR A. Double-layer tensegrity grids as deployable structures[J]. International Journal of Space Structures,1993,8(1-2):135-143. [82] ZHAO K,CHANG J,LI B,et al. Rolling direction prediction of tensegrity robot on the slope based on FEM and GA[J]. Proceedings of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science,2020,234(19):3846-3858. [83] KIM K. On the locomotion of spherical tensegrity robots[M]. California:University of California,Berkeley,2016. [84] BRUCE J,CALUWAERTS K,ISCEN A,et al. Design and evolution of a modular tensegrity robot platform[C]// 2014 IEEE International Conference on Robotics and Automation (ICRA). Hong Kong:IEEE,2014,3483-3489. [85] FRIESEN J M,GLICK P,FANTON M,et al. The second generation prototype of a duct climbing tensegrity robot,DuCTTv2[C]// 2016 IEEE International Conference on Robotics and Automation (ICRA). Stockholm:IEEE,2016:2123-2128. [86] KHAZANOV M,HUMPHREYS B,KEAT W,et al. Exploiting dynamical complexity in a physical tensegrity robot to achieve locomotion[C]// ECAL 2013:The Twelfth European Conference on Artificial Life. Taormina:MIT Press,2013:965-972. [87] KHAZANOV M,JOCQUE J,RIEFFEL J. Evolution of locomotion on a physical tensegrity robot[C]// ALIFE 14:The Fourteenth International Conference on the Synthesis and Simulation of Living Systems. Manhattan:MIT Press,2014:232-238. [88] ZHA J,WU X,KROEGER J,et al. A collision-resilient aerial vehicle with icosahedron tensegrity structure[C]// 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Las Vegas:IEEE,2020:1407-1412. [89] RIEFFEL J,MOURET J B. Adaptive and resilient soft tensegrity robots[J]. Soft Robotics,2018,5(3):318-329. [90] VESPIGNANI M,ERCOLANI C,FRIESEN J M,et al. Steerable locomotion controller for six-strut icosahedral tensegrity robots[C]// 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Madrid:IEEE,2018:2886-2892. [91] 田云峰,罗阿妮,刘贺平. 4杆张拉整体机器人单步驱动方式分析[J]. 制造业自动化,2019,41(7):93-97. TIAN Yunfeng,LUO Ani,LIU Heping. Analysis for driving the 4-bar tensegrity robot to roll[J]. Manufacturing Automation,2019,41(7):93-97. [92] ZHAO Y,ZHOU S,LIN C,et al. An efficient locomotion strategy for six-strut tensegrity robots[C]// 201713th IEEE International Conference on Control & Automation (ICCA). Ohrid:IEEE,2017:413-418. [93] RIEFFEL J,STUK R,VALERO-CUEVAS F J,et al. Locomotion of a tensegrity robot via dynamically coupled modules[C]// Proceedings of the International Conference on Morphological Computation. Venice,2007:1-3. [94] MIRLETZ B T,BHANDAL P,ADAMS R D,et al. Goal-directed CPG-based control for tensegrity spines with many degrees of freedom traversing irregular terrain[J]. Soft Robotics,2015,2(4):165-176. [95] ISCEN A,AGOGINO A,SUNSPIRAL V,et al. Flop and roll:learning robust goal-directed locomotion for a tensegrity robot[C]// 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. Chicago:IEEE,2014:2236-2243. [96] ISCEN A,AGOGINO A,SUNSPIRAL V,et al. Controlling tensegrity robots through evolution[C]// Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation. New York,2013:1293-1300. [97] CALUWAERTS K,DESPRAZ J,ISCEN A,et al. Design and control of compliant tensegrity robots through simulation and hardware validation[J]. Journal of the Royal Society Interface,2014,11(98):20140520. [98] SUNSPIRAL V,AGOGINO A,ATKINSON D. Super ball bot-structures for planetary landing and exploration,niac phase 2 final report[R]. 2015. [99] AGOGINO A K,SUNSPIRAL V,ATKINSON D. Super ball bot-structures for planetary landing and exploration[R]. 2018. [100] CERA B,AGOGINO A M. Multi-cable rolling locomotion with spherical tensegrities using model predictive control and deep learning[C]// 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Madrid:IEEE,2018:1-9. [101] ZHANG M,GENG X,BRUCE J,et al. Deep reinforcement learning for tensegrity robot locomotion[C]// 2017 IEEE International Conference on Robotics and Automation (ICRA). Singapore:IEEE,2017:634-641. [102] LUO J,EDMUNDS R,RICE F,et al. Tensegrity robot locomotion under limited sensory inputs via deep reinforcement learning[C]// 2018 IEEE International Conference on Robotics and Automation (ICRA). Brisbane:IEEE,2018:6260-6267. [103] 郭亚奇. 基于强化学习的张拉整体机器人运动控制研究[D]. 大连:大连理工大学,2021. GUO Yaqi. Tensegrity robot locomotion control via reinforcement learning[D]. Dalian:Dalian University of Technology,2021. [104] PAUL C,VALERO,CUEVAS F J,et al. Design and control of tensegrity robots for locomotion[J]. IEEE Transactions on Robotics,2006,22(5):944-957. [105] WANG K,AANJANEYA M,BEKRIS K. A first principles approach for data-efficient system identification of spring-rod systems via differentiable physics engines[C]// Learning for Dynamics and Control. Palo Alto:PMLR,2020:651-665. [106] TODOROV E,EREZ T,MUJOCO Y. A physics engine for model-based control[C]// 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. Vilamoura-Algarve:IEEE,2012:5026-5033. [107] MIRLETZ B T,PARK I W,QUINN R D,et al. Towards bridging the reality gap between tensegrity simulation and robotic hardware[C]// 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Hamburg:IEEE,2015:5357-5363. [108] TADIPARTHI V,HSU S C,BHATTACHARYA R. STEDY:Software for tensegrity dynamics[J]. Journal of Open Source Software,2019,4(33):1042. [109] GOYAL R,CHEN M,MAJJI M,et al. Motes:Modeling of tensegrity structures[J]. Journal of Open Source Software,2019,4(42):1613. [110] SHAH D S,BOOTH J W,BAINES R L,et al. Tensegrity robotics[J]. Soft Robotics,2022,9(4):639-56. [111] BATTAGLIA P,PASCANU R,LAI M,et al. Interaction networks for learning about objects,relations and physics[J]. Advances in Neural Information Processing Systems,2016,29:1. [112] KIM K,AGOGINO A K,MOON D,et al. Rapid prototyping design and control of tensegrity soft robot for locomotion[C]// IEEE International Conference on Robotics & Biomimetics. Bali:IEEE,2015:7-14. [113] KIM K,AGOGINO A K,AGOGINO A M. Emergent form-finding for center of mass control of ball-shaped tensegrity robots[C]// Autonomous Robots and Multirobot Systems (ARMS) Workshop,2015 International Conference on Autonomous Agents and Multiagent Systems. Istanbul:ACM,F,2015:1. [114] KIM K,AGOGINO A K,TOGHYAN A,et al. Robust learning of tensegrity robot control for locomotion through form-finding[C]// Autonomous Robots and Multirobot Systems (ARMS) Workshop,2015 International Conference on Autonomous Agents and Multiagent Systems. Istanbul:ACM. 2015:1. [115] CHEN L.H,KIM K,TANG E,et al. Soft spherical tensegrity robot design using rod-centered actuation and control[J]. Journal of Mechanisms and Robotics-Transactions of the Asme,2017,9(2):1. [116] SUNSPIRAL V,GOROSPE G,BRUCE J,et al. Tensegrity based probes for planetary exploration:entry,descent and landing (EDL) and surface mobility analysis[J]. International Journal of Planetary Probes,2013,7:13. [117] SABELHAUS A P,BRUCE J,CALUWAERTS K,et al. Hardware design and testing of SUPERball,a modular tensegrity robot[C]// 2015 IEEE international conference on robotics and automation (ICRA). Barcalona:IEEE,2015:2867-2873. [118] BRUCE J,SABELHAUS A P,CHEN Y,et al. SUPERball:exploring tensegrities for planetary probes[C]// International Symposium on Artificial Intelligence,Robotics and Automation in Space (i-SAIRAS). Montreal:2014:ARC-E-DAA-TN15338. [119] BURMS J,CALUWAERTS K,DAMBRE J,et al. Online unsupervised terrain classification for a compliant tensegrity robot using a mixture of echo state networks[C]// 2015 IEEE International Conference on Robotics and Automation (ICRA). Seattle:IEEE,2015:4252-4257. [120] VESPIGNANI M,FRIESEN J M,SUNSPIRAL V,et al. Design of SUPERball v2,a compliant tensegrity robot for absorbing large impacts[C]// 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Madrid:IEEE,2018:2865-2871. [121] SHIBATA M,SAIJYO F,HIRAI S,et al. Crawling by body deformation of tensegrity structure robots[C]// 2009 IEEE International Conference on Robotics and Automation. Kobe:IEEE,2009:4375-4380. [122] HIRAI S,KOIZUMI Y,SHIBATA M,et al. Active shaping of a tensegrity robot via pre-pressure[C]// 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Wollongong:IEEE,2013:19-25. [123] WU L,DE ANDRADE M J,BRAHME T,et al. A reconfigurable robot with tensegrity structure using nylon artificial muscles[C]// Active and Passive Smart Structures and Integrated Systems 2016. Las Vegas:SPIE,2016,9799:950-960. [124] BOEHM V,KAUFHOLD T,SCHALE F,et al. Spherical mobile robot based on a tensegrity structure with curved compressed members[C]// 2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM). IEEE,2016:1509-1514. [125] BOEHM V,KAUFHOLD T,ZEIDIS I,et al. Dynamic analysis of a spherical mobile robot based on a tensegrity structure with two curved compressed members[J]. Archive of Applied Mechanics,2017,87(5):853-864. [126] GARANGER K,KRAJEWSKI M,DEL VALLE I,et al. Soft tensegrity systems for planetary landing and exploration[J]. arXiv e-prints,2020:arXiv:2003.10999. [127] SAVIN S,AL BADR A,DEVITT D,et al. Mixed-integer-based path and morphing planning for a tensegrity drone[J]. Applied Sciences-Basel,2022,12(11):5588. [128] SAVIN S,KLIMCHIK A. Morphing-enabled path planning for flying tensegrity robots as a semidefinite program[J]. Frontiers in robotics and AI,2022,9:812849-812849. [129] LIU Qi,LI Pu,YIN Yuhan,et al. Rolling strategy and motion controller design for an aerial vehicle surrounded by a six-bar tensegrity structure[C]// 202342nd Chinese Control Conference (CCC). Tianjin:IEEE,2023:4131-4136. [130] BAINES R L,BOOTH J W,KRAMER-BOTTIGLIO R. Rolling soft membrane-driven tensegrity robots[J]. IEEE Robotics and Automation Letters,2020,5(4):6567-6574. [131] BOOTH J W,SHAH D,CASE J C,et al. Omniskins:robotic skins that turn inanimate objects into multifunctional robots[J]. Science Robotics,2018,3(22):eaat1853. |
[1] | 张俊, 吴成阳, 方汉良, 孙载超, 王凯龙, 汤腾飞. Z4型冗余驱动并联操作器的驱动特性研究[J]. 机械工程学报, 2024, 60(7): 66-78. |
[2] | 商德勇, 黄欣怡, 黄云山, 张天佑. 基于Kane方程的Delta并联机器人刚柔耦合动力学研究[J]. 机械工程学报, 2024, 60(7): 124-133. |
[3] | 谢超, 张恩杰, 严飙, 高峰, 杨金平, 房光强, 王治易. 空间可展薄膜阵列天线构型设计与验证[J]. 机械工程学报, 2024, 60(3): 11-27. |
[4] | 陈正, 吕立彤, 王飞, 姚斌, 李冬明, 刘红光, 张国良. 基于容腔压力规划的非模式切换负载口独立电液系统运动控制[J]. 机械工程学报, 2024, 60(2): 302-312. |
[5] | 袁小庆, 吴涛, 原勋, 王文东. 基于GSO-RF意图识别算法的全身助力外骨骼控制方法研究[J]. 机械工程学报, 2024, 60(17): 91-101. |
[6] | 雷飞, 刘思宇, 廖峻北, 郭朝, 王志瑞, 闫曈, 党睿娜, 苏波. 大负载作用下绳驱连续型机器人静力学建模分析[J]. 机械工程学报, 2024, 60(15): 28-37. |
[7] | 王敏, 孙景健, 丁基恒, 孙翊, 彭艳, 蒲华燕, 罗均, 谢少荣. 基于D-H参数与拉格朗日联立方程的仿生水蛇机器人运动学分析及动力学建模[J]. 机械工程学报, 2024, 60(15): 134-148. |
[8] | 张奇祥, 王金湘, 张伊晗, 张荣林, 靳立强, 殷国栋. 智能电动汽车线控制动关键技术与研究进展[J]. 机械工程学报, 2024, 60(10): 339-365. |
[9] | 王明昊, 汪满新. 一种新型五自由度混联机器人动力学建模与性能评价[J]. 机械工程学报, 2023, 59(9): 63-75. |
[10] | 赵睿英, 余进, CHEN Y H, 冯艳丽, 曹学鹏. 机械系统动力学Rosenberg嵌入法的扩展与解耦:一阶约束与二阶约束的整合[J]. 机械工程学报, 2023, 59(9): 101-115. |
[11] | 潘琪琪, 罗静静, 王富豪, 王洪波. 切口式单孔腹腔镜连续体手术机器人构型设计和优化[J]. 机械工程学报, 2023, 59(23): 55-67. |
[12] | 朱子俊, 朱祥龙, 董志刚, 康仁科, 鲍岩. 磨削加工颤振稳定性研究综述[J]. 机械工程学报, 2023, 59(21): 15-33. |
[13] | 黄维维, 张鑫泉, 朱利民. 基于重复控制的快速刀具伺服系统前馈补偿方法[J]. 机械工程学报, 2023, 59(21): 43-51. |
[14] | 张赫, 范志斌, 李海铭, 白明, 刘孟尧, 杨嘉辉, 赵杰. 玻璃体视网膜显微手术机器人研究进展及前沿热点[J]. 机械工程学报, 2023, 59(20): 451-469. |
[15] | 高镇海, 于桐, 孙天骏, 唐明弘, 高菲, 赵睿. 面向纵向自动驾驶的仿人驱动控制网络模型[J]. 机械工程学报, 2023, 59(18): 251-262. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||