[1] 李运华,何刘宇,杨丽曼. 非完整约束多轴驱动车辆的路径跟踪控制[J]. 机械工程学报,2014,50(5):33-41. LI Yunhua,HE Liuyu,YANG Liman. Path-following control of nonholonomic constraint multi-axle drive vehicle[J]. Journal of Mechanical Engineering,2014,50(5):33-41. [2] 战强,李伟. 球形移动机器人的研究进展与发展趋势[J]. 机械工程学报,2019,55(9):1-17. ZHAN Qiang,LI Wei. Research progress and development trend of spherical mobile robots[J]. Journal of Mechanical Engineering,2019,55(9):1-17. [3] 王宗义,李艳东,朱玲. 非完整移动机器人的双自适应神经滑模控制[J]. 机械工程学报,2010,46(23):16-22. WANG Zongyi,LI Yandong,ZHU Ling. Dual adaptive neural sliding mode control of nonholonomic mobile robot[J]. Journal of Mechanical Engineering,2010,46(23):16-22. [4] 戈新生,孙鹏伟. 自由漂浮空间机械臂非完整运动规划的粒子群优化算法[J]. 机械工程学报,2007,43(4):34-38. GE Xinsheng,SUN Pengwei. Particle swarm optimization algorithm for non-holonomic motion planning of free-floating space manipulator[J]. Journal of Mechanical Engineering,2007,43(4):34-38. [5] 史也. 空间机器人自主捕获目标的轨迹规划与控制研究[D]. 哈尔滨:哈尔滨工业大学,2013. SHI Ye. Research on trajectory planning and control of space robot for autonomous capturing target[D]. Harbin:Harbin Institute of Technology University,2013. [6] UDWADIA F E,WANICHANON T. Hamel's paradox and the foundations of analytical dynamics[J]. Applied Mathematics and Computation,2010,217(3):1253-1265. [7] CHEN Y H. Hamel paradox and Rosenberg conjecture in analytical dynamics[J]. Journal of Applied Mechanics,2013,80(4):041001-1-041001-8. [8] 赵韩,赵晓敏,姜建满. 基于Udwadia-Kalaba理论Hamel嵌入法研究[J]. 应用数学和力学,2017,38(06):696-707. ZHAO Han,ZHAO Xiaomin,JIANG Jianman. Study on Hamel embedding method based on Udwadia-Kalaba theory[J]. Applied Mathematics and Mechanics,2017,38(06):696-707. [9] NIGATU H,HO C Y,KIM D. On the structural constraint and motion of 3-prs parallel kinematic machines[C]//Proceedings of the ASME 2021 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American:Mechanisms and Robotics Conference,2021,V08AT08A032. [10] 徐子力,吕恬生,宋立博,等. 双足溜冰机器人动力学[J]. 上海交通大学学报,2007,(08):1282-1286+1291. XU Zili,LÜ Tiansheng,SONG Libo,et al. Dynamic analysis of biped ice-skater robot of passive wheel type[J]. Journal of Shanghai Jiaotong University,2007,(08):1282-1286+1291. [11] 刘卫刚. 环境探测球形机器人动力学建模及仿真[D]. 西安:西安电子科技大学,2010. LIU Weigang. Dynamic modeling and simulation of spherical robots for environment exploration[D]. Xian:Xidian University,2010. [12] NOORANI M R S. Hybrid dynamical model of a gait training robot:using maggis method for constrained motions[C]//Proceedings of the 2018 6th RSI International Conference on Robotics and Mechatronics. Tehran:RSI/ISM International Conference on Robotics and Mechatronics,2018,183-188. [13] MAGGI G A. Principi della teoria matematica del movimento dei corpi:corso di meccanica razionale[M]. Italia:Ulrico Hoepli,1896. MAGGI G A. Principles of the mathematical theory of the movement of bodies:rational mechanics course[M]. Italy:Ulrico Hoepli,1896. [14] MAGGI G A. Di alcune nuove forme delle equazioni della dinamica applicabili ai sistemi anolonomi[J]. Rendiconti Della Regia Academia Dei Lincei,1901,5:287-291. MAGGI G A. On some new forms of the equations of dynamics applicable to nonholonomic systems[J]. Accounts of Regia Academia Dei Lincei,1901,5:287-291. [15] CHAPLYGIN S A. On a ball's rolling on a horizontal plane[J]. Regular and Chaotic Dynamics,2002,7(2):131-48. [16] CHAPLYGIN S A. On a motion of a heavy body of revolution on a horizontal plane[J]. Regular and Chaotic Dynamics,2002,7(2):119-30. [17] BORISOV A V,MAMAEV I S. The rolling body motion of a rigid body on a plane and a sphere[J]. Regular and Chaotic Dynamic,2003,7(2):177-200. [18] WORONETZ P V. Equations of motion of a rigid body rolling along a stationary surface without slipping[D]. Kiev:Proc of Kiev University,1903. [19] HAMEL G. Theoretische mechanik:eine einheitliche einführung in die gesamte Mechanik[M]. New York:Springer,1949. HAMEL G. Theoretical mechanics:a unified introduction to all mechanics[M]. New York:Springer,1949. [20] ROSENBERG R. Analytical dynamics[M]. New York:Plenum Press,1977. [21] UDWADIA F E,KALABA R E. Analytical dynamics:a new approach[M]. Cambridge:University Press,2007. [22] 张新荣,孟为来. 基于虚位移分解与伺服轨迹约束的机械系统跟踪控制[J]. 机械工程学报,2015,51(3):45-50. ZHANG Xinrong,MENG Weilai. Trajectory tracking control of mechanical systems based on virtual displacement decomposition and servo constraint following[J]. Journal of Mechanical Engineering,2015,51(3):45-50. [23] ZHAO X,CHEN Y H,ZHAO H,et al. Udwadia-Kalaba equation for constrained mechanical systems:formulation and applications[J]. Chinese Journal of Mechanical Engineering,2018,31(06):11-24. [24] ZHAO H,ZHEN S,CHEN Y H. Dynamic modeling and simulation of multi-body systems using the Udwadia-Kalaba theory[J]. Chinese Journal of Mechanical Engineering,2013,26(05):839-850. [25] GINSBERG J. Engineering dynamics[M]. Cambridge:Cambridge University Press,2008. [26] SPONG M W,HUTCHINSON S,VIDYASAGAR M. Robot modeling and control[M]. New York:Wiley,2006. [27] UDWADIA F E,PHOHOMSIRI P. Explicit equations of motion for constrained mechanical systems with singular mass matrices and applications to multi-body dynamics[J]. Proceedings of the Royal Society A:Mathematical,Physical and Engineering Sciences,2006,462(2071):2097-2117. [28] PARS L A. A treatise on analytical dynamics[M]. New York:John Wiley and Sons,1965. [29] LU T T,SHIOU S H. Inverses of 2×2 block matrices[J]. Computers and Mathematics with Applications,2002,43(1-2):119-129. [30] HENDERSON H V,SEARLE S R. On deriving the inverse of a sum of matrices[J]. Siam Review,1981,23(1):53-60. [31] 王力梅,郭莉琴,邵海琴,等. 分块矩阵的行列式[J]. 四川兵工学报,2011,32(11):149-150. WANG Limei,GUO Liqin,SHAO Haiqin,et al. The determinant of the chunk matrix[J]. Sichuan Journal of Military Engineering,2011,32(11):149-150. [32] MURRAY-LASSO M A. Alternative methods of calculation of the pseudo inverse of a non full-rank matrix[J]. Journal of Applied Research and Technology,2008,6(3):170-183. [33] MURRAY R M,LI Z,SASTRY S S,et al. A mathematical introduction to robotic manipulation[M]. Florida:CRC Press,1994. [34] SIEGWART R,NOURBAKHSH I R,SCARAMUZZA D. Introduction to autonomous mobile robots[M]. Cambridge:MIT Press,2011. |