[1] ZHAO D J, ZHAO J S, YAN Z F. Planar deployable linkage and its application in overconstrained lift mechanism[J]. Journal of Mechanisms and Robotics, 2016, 8(2):021022. [2] MUNAWAR H S. Reconfigurable origami antennas:A review of the existing technology and its future prospects[J]. Int. J. Wirel. Microw. Technol, 2020, 10: 34-38. [3] ABULGASEM S, TUBBAL F, RAAD R, et al. Antenna designs for CubeSats:A review[J]. IEEE Access, 2021, 9:45289-45324. [4] WOHLHART K. Merging two general Goldberg 5R linkages to obtain a new 6R space mechanism[J]. Mechanism and Machine Theory, 1991, 26(7):659-668. [5] BAKER J E. A Comparative survey of the Bennett-based, 6-revolute kinematic loops[J]. Mechanism and Machine Theory, 1993, 28(1):83-96. [6] SONG C Y, FENG H, CHEN Y, et al. Reconfigurable mechanism generated from the network of Bennett linkages[J]. Mechanism and Machine Theory, 2015, 88: 49-62. [7] WEI G, DING X, DAI J S. Mobility and geometric analysis of the hoberman switch-pitch ball and its variant[J]. Journal of Mechanisms and Robotics, 2010, 2(3):031010. [8] WEI G, DAI J S. A spatial eight-bar linkage and its association with the deployable platonic mechanisms[J]. Journal of Mechanisms and Robotics, 2014, 6(2):021010. [9] KONG X. Type synthesis of single-loop overconstrained 6R spatial mechanisms for circular translation[J]. Journal of Mechanisms and Robotics, 2014, 6(4):041016. [10] 郭金伟,黄志荣,许允斗,等. 一类基于四面体组合单元的模块化构架式可展天线机构[J]. 航空学报, 2020, 41(3):301-313. GUO Jinwei, HUANG Zhirong, XU Yundou, et al. A modular structured deployable antenna mechanism based on tetrahedral combination elements[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3):301-313. [11] 郭金伟,许允斗,刘文兰,等. 基于四面体单元的新型可展机构自由度分析[J]. 机械工程学报, 2019, 55(12): 9-18. GUO Jinwei, XU Yundou, LIU Wenlan, et al. Degree of freedom analysis of a new deployable mechanism based on tetrahedral elements[J]. Journal of Mechanical Engineering, 2019, 55(12):9-18. [12] GUO J W, ZHAO Y, XU Y D, et al. Design and analysis of truss deployable antenna mechanism based on a novel symmetric hexagonal profile division method[J]. Chinese Journal of Aeronautics, 2020, 32(12):1-14. [13] 韩博,韩媛媛,许允斗,等. 剪叉式过约束双环桁架可展天线机构的构型设计与自由度分析[J]. 机器人, 2019, 41(3):362-371. HAN Bo, HAN Yuanyuan, XU Yundou, et al. Configuration design and degree of freedom analysis of overconstrained double-ring truss deployable antenna mechanism with shear fork[J]. Robot, 2019, 41(3): 362-371. [14] SONG X, GUO H, CHEN J, et al. Double-layer deployable mechanical network constructed of threefold-symmetric bricard linkages and Sarrus linkages[J]. Journal of Mechanisms and Robotics, 2021,13(6). [15] SUN X, LI R, YAO Y A. Loop-construction mechanism and its network based on quadrilateral mechanisms[J]. Mechanism and Machine Theory, 2023, 181:105181. [16] GAO Y, YANG F, CHEN B, et al. A deployable network with identical triangular panels based on a special twofold-symmetric Bricard 6R linkage[J]. Mechanism and Machine Theory, 2022, 178:105068. [17] LIU M, SHI C, GUO H, et al. Innovative design and optimization of the modular high deployment ratio two-dimensional planar antenna mechanism[J]. Mechanism and Machine Theory, 2022, 174:104928. [18] BENNETT G T. A new mechanism[J]. Engineering, 1903, 76:777-778. [19] CHEN Y, YOU Z. An extended myard linkage and its derived 6R linkage[J]. Journal of Mechanical Design, 2008, 130(5):680-682. [20] CHEN Y, YOU Z, TARNAI T. Threefold-symmetric Bricard linkages for deployable structures[J]. International Journal of Solids and Structures, 2005, 42(8):2287-2301. |