• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2023, Vol. 59 ›› Issue (23): 186-210.doi: 10.3901/JME.2023.23.186

• 数字化设计与制造 • 上一篇    下一篇

扫码分享

3D打印导电生物支架的研究进展与挑战

李汶海1, 张广明1, 于尊1, 韩志峰1, 马令轩1, 彭子龙1, 肖淼2, 徐林3,4, 西永明5, 兰红波1   

  1. 1. 青岛理工大学山东省增材制造工程技术研究中心 青岛 266520;
    2. 苏州大学心血管病研究所 苏州 215006;
    3. 滨州医学院烟台附属医院 烟台 264100;
    4. 滨州医学院康复工程研究院 烟台 264100;
    5. 青岛大学附属医院 青岛 266003
  • 收稿日期:2022-10-08 修回日期:2023-06-12 发布日期:2024-02-20
  • 通讯作者: 张广明(通信作者),男,1989年出生,博士,副教授,博士研究生导师。主要研究方向为微纳增材制造及3D打印。E-mail:ustbzgm@163.com
  • 作者简介:李汶海,男,1997年出生。主要研究方向为生物支架3D打印。E-mail:1664941485@qq.com;肖淼,男,1990年出生,神经生物学博士,讲师。主要研究方向为神经干细胞和人多能干细胞的三维培养及物理因子对干细胞行为调控。E-mail:mxiao@suda.edu.cn;徐林,男,1969年出生,医学博士,教授,博士研究生导师。从事骨科、手足外科专业,对足踝严重损伤创伤救治、复杂足踝畸形矫形、手外科疑难疾病及周围神经疑难疾病诊治有较深的造诣。E-mail: yantaixulin@126.com;兰红波,男,1970年出生,博士,教授,博士研究生导师。主要研究方向为微纳尺度3D打印、复合材料3D打印、多材料3D打印、大面积纳米压印光刻、微纳制造等。E-mail:hblan99@126.com
  • 基金资助:
    国家自然科学基金(52275345, 52175331, 51875300)、山东省高等学校青创科技扶持计划(2021KJ044)和国家自然科学基金重大基础研究(ZR2020ZD04)资助项目。

Research Progress and Challenges of 3D Printed Conductive Biological Scaffolds

LI Wenhai1, ZHANG Guangming1, YU Zun1, HAN Zhifeng1, MA Lingxuan1, PENG Zilong1, XIAO Miao2, XU Lin3,4, XI Yongming5, LAN Hongbo1   

  1. 1. Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao 266520;
    2. Institute of Cardiovascular Disease, Soochow University, Suzhou 215006;
    3. Yantai Affiliated Hospital of Binzhou Medical College, Yantai 264100;
    4. Institute of Rehabilitation Engineering Binzhou Medical College, Yantai 264100;
    5. The Affiliated Hospital of Qingdao University, Qingdao 266003
  • Received:2022-10-08 Revised:2023-06-12 Published:2024-02-20

摘要: 组织工程为修复或替换人体病变或损伤组织等再生医学提供一种崭新的解决途径。在组织工程中,生物支架作为关键要素(载体)之一,需要尽可能的模拟细胞生存的细胞外基质环境,既要具备生物相容性、生物可降解性和机械性能等,又要具备导电性来传导生物电性。加之,3D打印技术在复杂仿生结构制造方面具有不可替代的优势,已成为生物支架制造最流行的技术之一。因此,3D打印导电生物支架成为目前生物支架研究的热点之一。鉴于此,有必要对目前3D打印导电生物支架的相关内容进行整理和分析。主要简述导电生物支架的研究现状,介绍导电材料及导电化方法、导电生物支架的3D打印方法,并介绍其在神经细胞、骨细胞和心肌细胞中的典型应用,最后总结导电生物支架未来的发展方向。

关键词: 3D打印, 导电生物支架, 导电材料, 细胞培养

Abstract: Tissue engineering provides a new solution for regenerative medicine such as repairing or replacing diseased or damaged tissues. In tissue engineering, biological scaffolds, as one of the key elements (carriers), need to simulate the extracellular matrix environment for cell survival as much as possible. They should not only have biocompatibility, biodegradability and mechanical properties, but also have electrical conductivity to conduct bioelectricity. In addition, 3D printing technology has irreplaceable advantages in the manufacturing of complex bionic structures, and has become one of the most popular technologies in the manufacturing of biological scaffolds. Therefore, 3D printing of conductive biological scaffolds has become one of the hot spots in the research of biological scaffolds. In response to this, it is necessary to sort out and analyze the current contents of 3D printing conductive biological scaffolds. The current research status of conductive biological scaffolds is briefly introduced, including conductive materials, conductive methods, 3D printing methods of conductive biological scaffolds, and their typical applications in nerve cells, bone cells and cardiomyocytes. Finally, the future development direction of conductive biological scaffolds is summarized.

Key words: 3D printing, conductive biological scaffold, conductive materials, cells culture

中图分类号: