机械工程学报 ›› 2023, Vol. 59 ›› Issue (23): 186-210.doi: 10.3901/JME.2023.23.186
李汶海1, 张广明1, 于尊1, 韩志峰1, 马令轩1, 彭子龙1, 肖淼2, 徐林3,4, 西永明5, 兰红波1
收稿日期:
2022-10-08
修回日期:
2023-06-12
发布日期:
2024-02-20
通讯作者:
张广明(通信作者),男,1989年出生,博士,副教授,博士研究生导师。主要研究方向为微纳增材制造及3D打印。E-mail:ustbzgm@163.com
作者简介:
李汶海,男,1997年出生。主要研究方向为生物支架3D打印。E-mail:1664941485@qq.com;肖淼,男,1990年出生,神经生物学博士,讲师。主要研究方向为神经干细胞和人多能干细胞的三维培养及物理因子对干细胞行为调控。E-mail:mxiao@suda.edu.cn;徐林,男,1969年出生,医学博士,教授,博士研究生导师。从事骨科、手足外科专业,对足踝严重损伤创伤救治、复杂足踝畸形矫形、手外科疑难疾病及周围神经疑难疾病诊治有较深的造诣。E-mail: yantaixulin@126.com;兰红波,男,1970年出生,博士,教授,博士研究生导师。主要研究方向为微纳尺度3D打印、复合材料3D打印、多材料3D打印、大面积纳米压印光刻、微纳制造等。E-mail:hblan99@126.com
基金资助:
LI Wenhai1, ZHANG Guangming1, YU Zun1, HAN Zhifeng1, MA Lingxuan1, PENG Zilong1, XIAO Miao2, XU Lin3,4, XI Yongming5, LAN Hongbo1
Received:
2022-10-08
Revised:
2023-06-12
Published:
2024-02-20
摘要: 组织工程为修复或替换人体病变或损伤组织等再生医学提供一种崭新的解决途径。在组织工程中,生物支架作为关键要素(载体)之一,需要尽可能的模拟细胞生存的细胞外基质环境,既要具备生物相容性、生物可降解性和机械性能等,又要具备导电性来传导生物电性。加之,3D打印技术在复杂仿生结构制造方面具有不可替代的优势,已成为生物支架制造最流行的技术之一。因此,3D打印导电生物支架成为目前生物支架研究的热点之一。鉴于此,有必要对目前3D打印导电生物支架的相关内容进行整理和分析。主要简述导电生物支架的研究现状,介绍导电材料及导电化方法、导电生物支架的3D打印方法,并介绍其在神经细胞、骨细胞和心肌细胞中的典型应用,最后总结导电生物支架未来的发展方向。
中图分类号:
李汶海, 张广明, 于尊, 韩志峰, 马令轩, 彭子龙, 肖淼, 徐林, 西永明, 兰红波. 3D打印导电生物支架的研究进展与挑战[J]. 机械工程学报, 2023, 59(23): 186-210.
LI Wenhai, ZHANG Guangming, YU Zun, HAN Zhifeng, MA Lingxuan, PENG Zilong, XIAO Miao, XU Lin, XI Yongming, LAN Hongbo. Research Progress and Challenges of 3D Printed Conductive Biological Scaffolds[J]. Journal of Mechanical Engineering, 2023, 59(23): 186-210.
[1] BEDIR T,ULAG S,USTUNDAG C B,et al. 3D bioprinting applications in neural tissue engineering for spinal cord injury repair[J]. Materials Science and Engineering:C,2020,110:110741. [2] MONIA O,MILENA F,ROBERTO D P,et al. Biofabrication and bone tissue regeneration:Cell source,approaches,and challenges[J]. Frontiers in Bioengineering and Biotechnology,2017,5:17. [3] FUKADA E,YASUDA I. On the piezoelectric effect of bone[J]. Journal of the Physical Society of Japan,1957,12(10):1158-1162. [4] ALLAHYARI Z,HAGHIGHIPOUR N,MOZTARZADEH F,et al. Optimization of electrical stimulation parameters for MG-63 cell proliferation on chitosan/functionalized multiwalled carbon nanotube films[J]. RSC Advances,2016,6(111):109902. [5] GHOLIZADEH S,MOZTARZADEH F,HAGHIGHIPOUR N,et al. Preparation and characterization of novel functionalized multiwalled carbon nanotubes/chitosan/β-Glycerophosphate scaffolds for bone tissue engineering[J]. International Journal of Biological Macromolecules,2017,97:365-372. [6] SHAO S ,ZHOU S ,LI L,et al. Osteoblast function on electrically conductive electrospun PLA/MWCNTs nanofibers[J]. Biomaterials,2011,32(11):2821-2833. [7] RAVICHANDRAN R ,VENUGOPAL J R ,SUNDARRAJAN S,et al. Precipitation of nanohydroxyapatite on PLLA/PBLG/Collagen nanofibrous structures for the differentiation of adipose derived stem cells to osteogenic lineage[J]. Biomaterials,2012,33(3):846-855. [8] LEVIN M. Large-scale biophysics:ion flows and regeneration[J]. Trends in cell biology,2007,17(6):261-70. [9] LEVIN M. Bioelectric mechanisms in regeneration:unique aspects and future perspectives[C]//Seminars in Cell & Developmental Biology. Academic Press,2009,20(5):543-556. [10] LEVIN M. Bioelectromagnetics in morphogenesis[J]. Bioelectromagnetics,2003,24(5):295-315. [11] PRABHAKARAN P,PALANIYANDI T,KANAGAVALLI B,et al. Prospect and retrospect of 3D bio-printin[J]. Acta Histochemica,2022,124(7):151932. [12] SUN F,SUN X,WANG H,et al. Application of 3D-printed,PLGA-based scaffolds in bone tissue engineering[J]. International Journal of Molecular Sciences,2022,23(10):5831. [13] BAIER R V,RAGGIO J I C,GIOVANETTI C M,et al. Shape fidelity,mechanical and biological performance of 3D printed polycaprolactone-bioactive glass composite scaffolds[J]. Biomaterials Advances,2022,134:112540. [14] GAO C,LU C,JIAN Z,et al. 3D bioprinting for fabricating artificial skin tissue[J]. Colloids and Surfaces B:Biointerfaces,2021,208:112041. [15] LAIRD N Z,ACRI T M,CHAKKA J L,et al. Applications of nanotechnology in 3D printed tissue engineering scaffolds[J]. European Journal of Pharmaceutics and Biopharmaceutics,2021,161:15-28. [16] FENG Y,ZHU S,MEI D,et al. Application of 3D printing technology in bone tissue engineering:a review[J]. Current Drug Delivery,2021,18(7):847-861. [17] SHABBIRAHMED A M,SEKAR R,GOMEZ L A,et al. Recent developments of silk-based scaffolds for tissue engineering and regenerative medicine applications:A special focus on the advancement of 3D printing[J]. Biomimetics,2023,8(1):16. [18] ZIELIŃSKI P S,GUDETI P K R,RIKMANSPOEL T,et al. 3D printing of bio-instructive materials:Toward directing the cell[J]. Bioactive Materials,2023,19:292-327. [19] KIRCHMAJER D M,GORKIN III R. An overview of the suitability of hydrogel-forming polymers for extrusion-based 3D-printing[J]. Journal of Materials Chemistry B,2015,3(20):4105-4117. [20] LIU H,WANG Y,YANG Y,et al. Aligned graphene/silk fibroin conductive fibrous scaffolds for guiding neurite outgrowth in rat spinal cord neurons[J]. Journal of Biomedical Materials Research Part A,2021,109(4):488-499. [21] SAYYAR S,BJORNINEN M,HAIMI S,et al. UV cross-linkable graphene/poly (trimethylene carbonate) composites for 3D printing of electrically conductive scaffolds[J]. ACS Applied Materials & Interfaces,2016,8(46):31916-31925. [22] LI J,LIU X,CROOK J M,et al. A 3D printed graphene electrode device for enhanced and scalable stem cell culture,osteoinduction and tissue building[J]. Materials & Design,2021,201:109473. [23] ESRAFILZADEH D,JALILI R,STEWART E M,et al. High-performance multifunctional graphene-PLGA fibers:Toward biomimetic and conducting 3D scaffolds[J]. Advanced Functional Materials,2016,26(18):3105-3117. [24] JAKUS A E,SECOR E B,RUTZ A L,et al. Three-dimensional printing of high-content graphene scaffolds for electronic and biomedical applications[J]. ACS Nano,2015,9(4):4636-4648. [25] WANG J,WANG H,MO X,et al. Reduced graphene oxide-encapsulated microfiber patterns enable controllable formation of neuronal-like networks[J]. Adv. Mater.,2020,32(40):2004555. [26] LEE S J,ZHU W,NOWICKI M,et al. 3D printing nano conductive multi-walled carbon nanotube scaffolds for nerve regeneration[J]. Journal of Neural Engineering,2018,15(1):016018. [27] KABIRI M,SOLEIMANI M,SHABANI I,et al. Neural differentiation of mouse embryonic stem cells on conductive nanofiber scaffolds[J]. Biotechnology Letters,2012,34(7):1357-65. [28] HO C M B,MISHRA A,LIN P T P,et al. 3D printed polycaprolactone carbon nanotube composite scaffolds for cardiac tissue engineering[J]. Macromolecular Bioscience,2017,17(4):1600250. [29] ZHU K,SHIN S R,VAN KEMPEN T,et al. Gold nanocomposite bioink for printing 3D cardiac constructs[J]. Advanced Functional Materials,2017,27(12):1605352. [30] NAVAEI A,SAINI H,CHRISTENSON W,et al. Gold nanorod-incorporated gelatin-based conductive hydrogels for engineering cardiac tissue constructs[J]. Acta Biomaterialia,2016,41:133-46. [31] DVIR T,TIMKO B P,BRIGHAM M D,et al. Nanowired three-dimensional cardiac patches[J]. Nature Nanotechnology,2011,6(11):720-5. [32] RASTIN H,ZHANG B,BI J,et al. 3D printing of cell-laden electroconductive bioinks for tissue engineering applications[J]. Journal of Materials Chemistry B,2020,8(27):5862-5876. [33] SHU B,SUN X,LIU R,et al. Restoring electrical connection using a conductive biomaterial provides a new therapeutic strategy for rats with spinal cord injury[J]. Neuroscience Letters,2019,692:33-40. [34] XIE J,MACEWAN M R,WILLERTH S M,et al. Conductive core-sheath nanofibers and their potential application in neural tissue engineering[J]. Advanced Functional Materials,2009,19(14),2312-2318. [35] HUANG J,LU L,ZHANG J,et al. Electrical stimulation to conductive scaffold promotes axonal regeneration and remyelination in a rat model of large nerve defect[J]. PLoS One,2012,7(6):e39526. [36] SHI X,CHANG H,CHEN S,et al. Regulating cellular behavior on few-layer reduced graphene oxide films with well-controlled reduction states[J]. Advanced Functional Materials,2012,22(4):751-759. [37] LIU Z,ROBINSON J T,SUN X,et al. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs[J]. Journal of the American Chemical Society,2008,130(33):10876-10877. [38] LA W G,PARK S,YOON H H,et al. Delivery of a therapeutic protein for bone regeneration from a substrate coated with graphene oxide[J]. Small,2013,9(23):4051-4060. [39] FU C,YANG X,TAN S,et al. Enhancing cell proliferation and osteogenic differentiation of MC3T3-E1 pre-osteoblasts by BMP-2 delivery in graphene oxide-incorporated PLGA/HA biodegradable microcarriers[J]. Scientific Reports,2017,7(1):1-13. [40] SAYYAR S,OFFICER D L,WALLACE G G. Fabrication of 3D structures from graphene-based biocomposites[J]. Journal of Materials Chemistry B,2017,5(19):3462-3482. [41] UNAGOLLA J M,JAYASURIYA A C. Enhanced cell functions on graphene oxide incorporated 3D printed polycaprolactone scaffolds[J]. Materials Science and Engineering:C,2019,102:1-11. [42] FU C,PAN S,MA Y,et al. Effect of electrical stimulation combined with graphene-oxide-based membranes on neural stem cell proliferation and differentiation[J]. Artificial Cells,Nanomedicine,and Biotechnology,2019,47(1):1867-1876. [43] DEPAN D,GIRASE B,SHAH J,et al. Structure-process-property relationship of the polar graphene oxide-mediated cellular response and stimulated growth of osteoblasts on hybrid chitosan network structure nanocomposite scaffolds[J]. Acta Biomaterialia,2011,7(9):3432-3445. [44] DUBEY N,BENTINI R,ISLAM I,et al. Graphene:a versatile carbon-based material for bone tissue engineering[J]. Stem Cells International,2015,2015:804213. [45] CHEN G-Y,PANG D-P,HWANG S-M,et al. A graphene-based platform for induced pluripotent stem cells culture and differentiation[J]. Biomaterials,2012,33(2):418-427. [46] NALVURAN H,ELçIN A E,ELçIN Y M. Nanofibrous silk fibroin/reduced graphene oxide scaffolds for tissue engineering and cell culture applications[J]. International journal of Biological Macromolecules,2018,114:77-84. [47] RYU S,KIM B-S. Culture of neural cells and stem cells on graphene[J]. Tissue Engineering and Regenerative Medicine,2013,10(2):39-46. [48] JASIM D A,LOZANO N,BUSSY C,et al. Graphene-based papers as substrates for cell growth:Characterisation and impact on mammalian cells[J]. FlatChem,2018,12:17-25. [49] LIAO C,LI Y,TJONG S C. Graphene nanomaterials:Synthesis,biocompatibility,and cytotoxicity[J]. International Journal of Molecular Sciences,2018,19(11):3564. [50] LEE W C,LIM C H,SU C,et al. Cell-assembled graphene biocomposite for enhanced chondrogenic differentiation[J]. Small,2015,11(8):963-9. [51] KIM J,CHOI K S,KIM Y,et al. Bioactive effects of graphene oxide cell culture substratum on structure and function of human adipose-derived stem cells[J]. J. Biomed. Mater. Res. A,2013,101(12):3520-30. [52] FABBRO A,SUCAPANE A,TOMA F M,et al. Adhesion to carbon nanotube conductive scaffolds forces action-potential appearance in immature rat spinal neurons[J]. PloS one,2013,8(8):e73621. [53] KABIRI M,ORAEE-YAZDANI S,DODEL M,et al. Cytocompatibility of a conductive nanofibrous carbon nanotube/poly (L-Lactic acid) composite scaffold intended for nerve tissue engineering[J]. EXCLI Journal,2015,14:851. [54] SUBRAMANI K,PANDRUVADA S,PULEO D,et al. In vitro evaluation of osteoblast responses to carbon nanotube-coated titanium surfaces[J]. Progress in Orthodontics,2016,17(1):1-9. [55] URSU E-L,GAVRIL G,MORARIU S,et al. Single-walled carbon nanotubes-G-quadruplex hydrogel nanocomposite matrixes for cell support applications[J]. Materials Science and Engineering:C,2020,111:110800. [56] LEE J-R,RYU S,KIM S,et al. Behaviors of stem cells on carbon nanotube[J]. Biomaterials Research,2015,19(1):1-6. [57] HIRATA E,UO M,TAKITA H,et al. Multiwalled carbon nanotube-coating of 3D collagen scaffolds for bone tissue engineering[J]. Carbon,2011,49(10):3284-91. [58] ALI-BOUCETTA H,AL-JAMAL K T,KOSTARELOS K. Cytotoxic assessment of carbon nanotube interaction with cell cultures[M]. Biomedical Nanotechnology,2011,726:299-312. [59] AOKI N,AKASAKA T,WATARI F,et al. Carbon nanotubes as scaffolds for cell culture and effect on cellular functions[J]. Dental Materials Journal,2007,26(2):178-185. [60] ZHAO G,ZHANG X,LI B,et al. Solvent-free fabrication of carbon nanotube/silk fibroin electrospun matrices for enhancing cardiomyocyte functionalities[J]. ACS Biomaterials Science & Engineering,2020,6(3):1630-1640. [61] ZHOU J,VIJAYAVENKATARAMAN S. 3D-printable conductive materials for tissue engineering and biomedical applications[J]. Bioprinting,2021,24:e00166. [62] MIHIC A,CUI Z,WU J,et al. A conductive polymer hydrogel supports cell electrical signaling and improves cardiac function after implantation into myocardial infarct[J]. Circulation,2015,132(8):772-84. [63] ATEH D D,VADGAMA P,NAVSARIA H A. Culture of human keratinocytes on polypyrrole-based conducting polymers[J]. Tissue Engineering,2006,12(4):645-55. [64] YANG S,JANG L,KIM S,et al. Polypyrrole/alginate hybrid hydrogels:electrically conductive and soft biomaterials for human mesenchymal stem cell culture and potential neural tissue engineering applications[J]. Macromolecular Bioscience,2016,16(11):1653-61. [65] ZAREI M,SAMIMI A,KHORRAM M,et al. Fabrication and characterization of conductive polypyrrole/chitosan/collagen electrospun nanofiber scaffold for tissue engineering application[J]. International Journal of Biological Macromolecules,2021,168:175-86. [66] HU W-W,HSU Y-T,CHENG Y-C,et al. Electrical stimulation to promote osteogenesis using conductive polypyrrole films[J]. Materials Science and Engineering:C,2014,37:28-36. [67] WENG B,LIU X,SHEPHERD R,et al. Inkjet printed polypyrrole/collagen scaffold:A combination of spatial control and electrical stimulation of PC12 cells[J]. Synthetic Metals,2012,162(15-16):1375-80. [68] QI F,WANG Y,MA T,et al. Electrical regulation of olfactory ensheathing cells using conductive polypyrrole/chitosan polymers[J]. Biomaterials,2013,34(7),1799-809. [69] JOUNG D ,TRUONG V ,NEITZKE C C ,et al. Spinal cord scaffolds:3D printed stem-cell derived neural progenitors generate spinal cord scaffolds[J]. Advanced Functional Materials,2018,28(39):1801850. [70] QIAN Y,ZHAO X,HAN Q,et al. An integrated multi-layer 3D-fabrication of PDA/RGD coated graphene loaded PCL nanoscaffold for peripheral nerve restoration[J]. Nature Communications,2018,9(1):1-16. [71] KOFFLER J,ZHU W,QU X,et al. Biomimetic 3D-printed scaffolds for spinal cord injury repair [J]. Nature Medicine,2019,25(2):263-269. [72] LIU X,HAO M,CHEN Z,et al. 3D bioprinted neural tissue constructs for spinal cord injury repair[J]. Biomaterials,2021,272:120771. [73] 赵佳伟,兰红波,杨昆,等. 电场驱动熔融喷射沉积高分辨率3D打印[J]. 工程科学学报,2019,41(5):652-661. ZHAO Jiawei,LAN Hongbo,YANG Kun,et al Electric field driven melt spray deposition high resolution 3D printing[J] Journal of Engineering Science,2019,41(5):652-661. [74] 杨昆,杨建军,赵佳伟,等. 基于电场驱动熔融喷射3D打印大面积聚甲基丙烯酸甲酯微结构制造方法[J]. 高分子材料科学与工程,2019,35(10):115-123. YANG Kun,YANG Jianjun,ZHAO Jiawei,et al. Fabrication of large-area poly (methyl methacrylate) microstructures based on Electric Field Driven Melt Jet 3D Printing[J]. Polymer Materials Science and Engineering,2019,35(10):115-123. [75] 杨昆,张广明,李晓强,等. 基于电场驱动熔融喷射聚合物基复合材料高分辨率3D打印[J]. 机械工程学报,2021,56(23):193-202. YANG Kun,ZHANG Guangming,LI Xiaoqiang,et al. High resolution 3D printing of polymer matrix composites driven by electric field[J]. Journal of Mechanical Engineering,2020,56(23):193-202. [76] LI K,WANG D,ZHAO K,et al. Electrohydrodynamic jet 3D printing of PCL/PVP composite scaffold for cell culture[J]. Talanta,2020,211:120750. [77] HE J,XIA P,LI D. Development of melt electrohydrodynamic 3D printing for complex microscale poly (ε-caprolactone) scaffolds[J]. Biofabrication,2016,8(3):035008. [78] HE J,ZHANG B,LI Z,et al. High-resolution electrohydrodynamic bioprinting:a new biofabrication strategy for biomimetic micro/nanoscale architectures and living tissue constructs[J]. Biofabrication,2020,12(4):042002. [79] VIJAYAVENKATARAMAN S,THAHARAH S,ZHANG S,et al. 3D-printed PCL/rGO conductive scaffolds for peripheral nerve injury repair[J]. Artificial Organs,2019,43(5):515-523. [80] VIJAYAVENKATARAMAN S,THAHARAH S,ZHANG S,et al. Electrohydrodynamic jet 3D-printed PCL/PAA conductive scaffolds with tunable biodegradability as nerve guide conduits (NGCs) for peripheral nerve injury repair[J]. Materials & Design,2019,162:171-184. [81] VIJAYAVENKATARAMAN S,KANNAN S,CAO T,et al. 3D-printed PCL/PPy conductive scaffolds as three-dimensional porous nerve guide conduits (NGCs) for peripheral nerve injury repair[J]. Frontiers in Bioengineering and Biotechnology,2019,7:266. [82] PIIRONEN K,HAAPALA M,TALMAN V,et al. Cell adhesion and proliferation on common 3D printing materials used in stereolithography of microfluidic devices[J]. Lab on a Chip,2020,20(13):2372-2382. [83] AGGAS J R,ABASI S,PHIPPS J F,et al. Microfabricated and 3D printed electroconductive hydrogels of PEDOT:PSS and their application in bioelectronics[J]. Biosensors and Bioelectronics,2020,168:112568. [84] WU Y,CHEN Y X,YAN J,et al. Fabrication of conductive gelatin methacrylate-polyaniline hydrogels[J]. Acta Biomaterialia,2016,33:122-130. [85] HEO D N,LEE S-J,TIMSINA R,et al. Development of 3D printable conductive hydrogel with crystallized PEDOT:PSS for neural tissue engineering[J]. Materials Science and Engineering:C,2019,99:582-590. [86] ZEIN I,HUTMACHER D W,TAN K C,et al. Fused deposition modeling of novel scaffold architectures for tissue engineering applications[J]. Biomaterials,2002,23(4):1169-1185. [87] HOUSHYAR S,PILLAI M M,SAHA T,et al. Three-dimensional directional nerve guide conduits fabricated by dopamine-functionalized conductive carbon nanofibre-based nanocomposite ink printing[J]. RSC Advances,2020,10(66):40351-40364. [88] HAN X,YANG D,YANG C,et al. Carbon fiber reinforced PEEK composites based on 3D-printing technology for orthopedic and dental applications[J]. Journal of Clinical Medicine,2019,8(2):240. [89] DIAS D,VALE A C,CUNHA E P,et al. 3D-printed cryomilled poly (ε-caprolactone)/graphene composite scaffolds for bone tissue regeneration[J]. Journal of Biomedical Materials Research Part B:Applied Biomaterials,2021,109(7):961-972. [90] GAO Q,NIU X,SHAO L,et al. 3D printing of complex GelMA-based scaffolds with nanoclay[J]. Biofabrication,2019,11(3):035006. [91] CHOI W J,HWANG K S,KWON H J,et al. Rapid development of dual porous poly (lactic acid) foam using fused deposition modeling (FDM) 3D printing for medical scaffold application[J]. Materials Science and Engineering:C,2020,110:110693. [92] CERETTI E,GINESTRA P,NETO P,et al. Multi-layered scaffolds production via fused deposition modeling (FDM) using an open source 3D printer:Process parameters optimization for dimensional accuracy and design reproducibility[J]. Procedia CIRP,2017,65:13-8. [93] YUK H,LU B,LIN S,et al. 3D printing of conducting polymers[J]. Nature Communications,2020,11(1):1-8. [94] SAYYAR S,GAMBHIR S,CHUNG J,et al. 3D printable conducting hydrogels containing chemically converted graphene[J]. Nanoscale,2017,9(5):2038-2050. [95] ZHANG G,LAN H,QIAN L,et al. A microscale 3D printing based on the electric-field-driven jet[J]. 3D Printing and Additive Manufacturing,2020,7(1):37-44. [96] HUANG H,ZHANG G,LI W,et al. The theoretical model and verification of electric-field-driven jet 3D printing for large-height and conformal micro/nano-scale parts[J]. Virtual and Physical Prototyping,2023,18(1):e2140440. [97] VIJAYAVENKATARAMAN S,ZHANG S,LU W F,et al. Electrohydrodynamic-jetting (EHD-jet) 3D-printed functionally graded scaffolds for tissue engineering applications[J]. Journal of Materials Research,2018,33(14):1999-2011. [98] LIU H,VIJAYAVENKATARAMAN S,WANG D,et al. Influence of electrohydrodynamic jetting parameters on the morphology of PCL scaffolds[J]. International Journal of Bioprinting,2017,3(1):009. [99] SUN J,VIJAYAVENKATARAMAN S,LIU H. An overview of scaffold design and fabrication technology for engineered knee meniscus[J]. Materials,2017,10(1):29. [100] WANG H,VIJAYAVENKATARAMAN S,WU Y,et al. Investigation of process parameters of electrohydro- dynamic jetting for 3D printed PCL fibrous scaffolds with complex geometries[J]. International Journal of Bioprinting,2016,2(1):9. [101] GAO D,ZHOU J G. Designs and applications of electrohydrodynamic 3D printing[J]. International Journal of Bioprinting,2019,5(1):172. [102] POELLMANN M J,JOHNSON A J W. Multimaterial polyacrylamide:fabrication with electrohydrodynamic jet printing,applications,and modeling[J]. Biofabrication,2014,6(3):035018. [103] MIN S-Y,KIM T-S,KIM B J,et al. Large-scale organic nanowire lithography and electronics[J]. Nature Communications,2013,4(1):1-9. [104] MELCHELS F P,FEIJEN J,GRIJPMA D W. A review on stereolithography and its applications in biomedical engineering[J]. Biomaterials,2010,31(24):6121-6130. [105] 王晓晶,涂龙,罗晓亮,等. 聚合物基材料4D打印研究进展[J]. 材料导报,2022,36(14):20100265-15. WANG Xiaojing,TU Long,LUO Xiaoliang,et al Research progress of 4D printing of polymer based materials[J]. Material Guide,2022,36(14):20100265-15. [106] ZHANG G,SONG D,JIANG J,et al. Electrically assisted continuous vat photopolymerization 3D printing for fabricating high-performance ordered graphene/polymer composites[J]. Composites Part B:Engineering,2023,250:110449. [107] SKOOG S A,GOERING P L,NARAYAN R J. Stereolithography in tissue engineering[J]. Journal of Materials Science:Materials in Medicine,2014,25(3):845-856. [108] MUERZA-CASCANTE M L,SHOKOOHMAND A,KHOSROTEHRANI K,et al. Endosteal-like extracellular matrix expression on melt electrospun written scaffolds[J]. Acta Biomaterialia,2017,52:145-158. [109] HUANG J,CHEN Q,JIANG H,et al. A survey of design methods for material extrusion polymer 3D printing[J]. Virtual and Physical Prototyping,2020,15(2):148-162. [110] AZAD M A,OLAWUNI D,KIMBELL G,et al. Polymers for extrusion-based 3D printing of pharmaceuticals:A holistic materials–process perspective[J]. Pharmaceutics,2020,12(2):124. [111] LIU Z,WANG Y,WU B,et al. A critical review of fused deposition modeling 3D printing technology in manufacturing polylactic acid parts[J]. The International Journal of Advanced Manufacturing Technology,2019,102(9):2877-2889. [112] ZAMANI F,AMANI-TEHRAN M,ZAMINY A,et al. Conductive 3D structure nanofibrous scaffolds for spinal cord regeneration[J]. Fibers and Polymers,2017,18(10):1874-1881. [113] KIYOTAKE E A,MARTIN M D,DETAMORE M S. Regenerative rehabilitation with conductive biomaterials for spinal cord injury[J]. Acta Biomaterialia,2022,139:43-64. [114] GHASEMI-MOBARAKEH L,PRABHAKARAN M P,MORSHED M,et al. Electrical stimulation of nerve cells using conductive nanofibrous scaffolds for nerve tissue engineering[J]. Tissue Engineering Part A,2009,15(11):3605-3619. [115] SUDWILAI T,NG J J,BOONKRAI C,et al. Polypyrrole-coated electrospun poly (lactic acid) fibrous scaffold:effects of coating on electrical conductivity and neural cell growth[J]. Journal of Biomaterials Science,Polymer Edition,2014,25(12):1240-1252. [116] LEE J Y,BASHUR C A,GOLDSTEIN A S,et al. Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications[J]. Biomaterials,2009,30(26):4325-4335. [117] FARKHONDEHNIA H,AMANI TEHRAN M,ZAMANI F. Fabrication of biocompatible PLGA/PCL/PANI nanofibrous scaffolds with electrical excitability[J]. Fibers and Polymers,2018,19(9):1813-1819. [118] GOMEZ N,SCHMIDT C E. Nerve growth factor-immobilized polypyrrole:Bioactive electrically conducting polymer for enhanced neurite extension[J]. Journal of Biomedical Materials Research Part A,2007,81(1):135-149. [119] KHORSHIDI S,KARKHANEH A. Hydrogel/fiber conductive scaffold for bone tissue engineering[J]. Journal of Biomedical Materials Research Part A,2018,106(3):718-724. [120] WIBOWO A,VYAS C,COOPER G,et al. 3D printing of polycaprolactone-polyaniline electroactive scaffolds for bone tissue engineering[J]. Materials,2020,13(3):512. [121] GONCALVES E M,OLIVEIRA F J,SILVA R F,et al. Three-dimensional printed PCL-hydroxyapatite scaffolds filled with CNT s for bone cell growth stimulation[J]. Journal of Biomedical Materials Research Part B:Applied Biomaterials,2016,104(6):1210-1219. [122] CHEN M-C,SUN Y-C,CHEN Y-H. Electrically conductive nanofibers with highly oriented structures and their potential application in skeletal muscle tissue engineering[J]. Acta Biomaterialia,2013,9(3):5562-72. [123] RAJZER I,ROM M,MENASZEK E,et al. Conductive PANI patterns on electrospun PCL/gelatin scaffolds modified with bioactive particles for bone tissue engineering[J]. Materials Letters,2015,138:60-63. [124] HARDY J G,VILLANCIO-WOLTER M K,SUKHAVASI R C,et al. Electrical stimulation of human mesenchymal stem cells on conductive nanofibers enhances their differentiation toward osteogenic outcomes[J]. Macromolecular Rapid Communications,2015,36(21):1884-1890. [125] DE CASTRO J G,RODRIGUES B V,RICCI R,et al. Designing a novel nanocomposite for bone tissue engineering using electrospun conductive PBAT/polypyrrole as a scaffold to direct nanohydroxyapatite electrodeposition[J]. RSC Advances,2016,6(39):32615-32623. [126] BAI R G,NINAN N,MUTHOOSAMY K,et al. Graphene:A versatile platform for nanotheranostics and tissue engineering[J]. Progress in Materials Science,2018,91:24-69. [127] SHEVACH M,MAOZ B M,FEINER R,et al. Nanoengineering gold particle composite fibers for cardiac tissue engineering[J]. Journal of Materials Chemistry B,2013,1(39):5210-5217. [128] FLEISCHER S,SHEVACH M,FEINER R,et al. Coiled fiber scaffolds embedded with gold nanoparticles improve the performance of engineered cardiac tissues[J]. Nanoscale,2014,6(16):9410-9414. [129] RAVICHANDRAN R,SRIDHAR R,VENUGOPAL J R,et al. Gold nanoparticle loaded hybrid nanofibers for cardiogenic differentiation of stem cells for infarcted myocardium regeneration[J]. Macromolecular Bioscience,2014,14(4):515-525. [130] LI M ,GUO Y ,WEI Y , et al. Electrospinning polyaniline-contained gelatin nanofibers for tissue engineering applications[J]. Biomaterials,2006,27(13):2705-2715. [131] KAI D,PRABHAKARAN M P,JIN G,et al. Polypyrrole-contained electrospun conductive nanofibrous membranes for cardiac tissue engineering[J]. Journal of Biomedical Materials Research Part A,2011,99(3):376-385. [132] GELMI A,ZHANG J,CIESLAR-POBUDA A,et al. Electroactive 3D materials for cardiac tissue engineering[J]. Proceedings of SPIE-The International Society for Optical Engineering,2015,9430:445-451. [133] GELMI A,CIESLAR-POBUDA A,DE MUINCK E,et al. Direct mechanical stimulation of stem cells:A beating electromechanically active scaffold for cardiac tissue engineering[J]. Advanced Healthcare Materials,2016,5(12):1471-1480. [134] BORRIELLO A,GUARINO V,SCHIAVO L,et al. Optimizing PANi doped electroactive substrates as patches for the regeneration of cardiac muscle[J]. Journal of Materials Science:Materials in Medicine,2011,22(4):1053-1062. |
[1] | 赵欣, 黄金杰. 基于RSM-RVEA的FDM增材制造工艺参数优化方法[J]. 机械工程学报, 2024, 60(19): 277-297. |
[2] | 黄金杰, 赵欣. 3D打印中的分层计算研究进展[J]. 机械工程学报, 2024, 60(17): 235-262. |
[3] | 孙江涛, 张净凯, 程坦, 范志永, 叶春生, 蔡道生, 魏青松. 吸热墨水喷射3D打印实验平台研制与自制墨水打印试验研究[J]. 机械工程学报, 2024, 60(17): 263-271. |
[4] | 侯佳奇, 张广明, 于志浩, 李印, 马令轩, 韩志峰, 石凯, 郭辰旭, 兰红波. 平板电极电场驱动多喷头喷射高效微3D打印方法和规律研究[J]. 机械工程学报, 2024, 60(17): 310-320. |
[5] | 喻康, 傅建中, 贺永. 面向软组织缺损修复的组织工程支架研究进展[J]. 机械工程学报, 2024, 60(15): 255-271. |
[6] | 刘明良, 唐颀, 田小永, 刘腾飞, 秦滢杰, 李涤尘. 连续纤维增强加筋圆柱壳回转3D打印工艺及其轴压性能研究[J]. 机械工程学报, 2024, 60(15): 283-290. |
[7] | 彭子龙, 吴金印, 王萌杰, 李一楠, 兰红波. 电场驱动微尺度3D打印掩膜电解加工微结构[J]. 机械工程学报, 2024, 60(15): 420-436. |
[8] | 王福吉, 王公硕, 王洪全, 付饶, 吴博, 王琦. 短-连续碳纤维同步增强热塑性复合材料预浸线材制备及3D打印工艺分析[J]. 机械工程学报, 2024, 60(11): 283-295. |
[9] | 穆英朋, 刘富初, 张驰, 黄捷飞, 刘鑫, 韩光超, 樊自田, 许峰. 水溶性氧化钙陶瓷型芯的挤出式3D打印参数优化与表面精度控制研究[J]. 机械工程学报, 2024, 60(1): 170-178. |
[10] | 兰红波, 李红珂, 钱垒, 张广明, 于志浩, 孙鹏, 许权, 赵佳伟, 王飞, 朱晓阳. 电场驱动喷射沉积微纳3D打印及其在先进电路和电子制造中的应用[J]. 机械工程学报, 2023, 59(9): 230-251. |
[11] | 罗来马, 汤俊宇, 吴玉程. WC-Co硬质合金的成型工艺研究进展[J]. 机械工程学报, 2023, 59(8): 60-73. |
[12] | 李佩锡, 周德志, 杨长明, 饶玮祎, 林峰, 欧阳礼亮. 生物3D打印研究进展:动物、植物及微生物细胞的增材制造[J]. 机械工程学报, 2023, 59(19): 237-252. |
[13] | 李波波, 刘靖驰, 李晓强, 邱成鸿, 卢秉恒. 基于电脉冲的铁基非晶薄带增材制造试验研究[J]. 机械工程学报, 2023, 59(15): 247-254. |
[14] | 王权岱, 强昊文, 叶思彤, 李鹏阳, 郑建明, 李言. 光-热双固复合材料3D打印成型数值模拟及实验验证[J]. 机械工程学报, 2023, 59(15): 293-303. |
[15] | 厉鸿韬, 黄延禄, 杨永强. 基于空气动力学透镜的线性聚焦3D打印送粉喷头设计与性能研究[J]. 机械工程学报, 2023, 59(11): 253-263. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||