• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2023, Vol. 59 ›› Issue (23): 87-95.doi: 10.3901/JME.2023.23.087

• 机器人及机构学 • 上一篇    下一篇

扫码分享

双半球胶囊机器人滑滚驱动机理

张永顺, 邢立君, 董海, 马钰璘   

  1. 大连理工大学高性能精密制造全国重点实验室 大连 116024
  • 收稿日期:2022-12-22 修回日期:2023-06-05 发布日期:2024-02-20
  • 通讯作者: 张永顺(通信作者),男,1965 年出生,博士,教授,博士研究生导师。主要研究方向为机器人机电一体化技术等。E-mail:zyshun@dlut.edu.cn
  • 作者简介:邢立君,男,1998年出生,硕士研究生。主要研究方向为胶囊机器人流体环境运动性能。E-mail:xlj22004048@mail.dlut.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(61773084, 62173059)。

Sliding and Rolling Mechanism of a Dual Hemisphere Capsule Robot

ZHANG Yongshun, XING Lijun, DONG Hai, MA Yulin   

  1. State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian 116024
  • Received:2022-12-22 Revised:2023-06-05 Published:2024-02-20

摘要: 为实现双半球胶囊机器人的精准移位,胶囊必须具有慢速移位控制功能。然而,低转速的双半球胶囊慢速运动时,容易受到胃肠凸凹表面的干扰,胶囊姿态稳定性差,精准移位控制困难。为此,提出流体环境内胶囊滑滚驱动控制策略,即通过流体环境内胶囊的高速空转解决姿态稳定控制问题,并利用滑滚运动实现胶囊慢速精确移位。以低雷诺数流体理论和弹流润滑理论为基础,计算双半球胶囊在胃壁表面滑滚运动的流体力和力矩,建立滑滚驱动动力学模型,对胶囊滑滚速度特性进行分析。仿真及实验表明:低雷诺数流体环境下利用滑滚驱动策略实现双半球胶囊慢速稳定移位功能切实可行,滑滚速度可通过改变控制参数实现精确控制,显著提高了胶囊移位精度。研究为借助流体环境改善胶囊的动态性能提供了理论依据。

关键词: 胶囊机器人, 低雷诺数, 滑滚运动, 动态性能

Abstract: In order to realize the precise transposition control of the double hemisphere capsule robot(DHCR), the DHCR must have the function of slow transposition. However, the DHCR, which moves slowly at small rotational speed in a non-fluid environment, is likely to be interfered by scraggy surface of the gastrointestinal tract, thus precise transposition control of the DHCR can't be achieved due to some problems such as unstable posture of the DHCR. Therefore, a sliding and rolling drive strategy of the DHCR in the fluid environment is proposed, in which, the DHCR is idling at high speed to achieve stable attitude control, and the sliding motion is used to realize the slow and precise transposition of the capsule. Based on the low Reynolds number fluid theory and the elastohydrodynamic lubrication theory, the fluid force and torque against the DHCR when it is sliding on the surface of the stomach wall were calculated, and the sliding driving dynamics model is established. The characteristics of its transposition speed were analyzed. The simulation and experimental results show that it is feasible to realize the slow transposition function of the DHCR by using the sliding-roll driving strategy in the low Reynolds number fluid environment. The transposition speed can be precisely controlled by changing the control parameters, and the transposition accuracy of the DHCR is significantly improved. This research provides a theoretical basis for improving the dynamic performance of capsule by aid of fluid environment.

Key words: capsule robot, low Reynolds number, sliding-rolling motion, dynamic performance

中图分类号: