• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2023, Vol. 59 ›› Issue (22): 176-185.doi: 10.3901/JME.2023.22.176

• 仪器科学与技术 • 上一篇    下一篇

扫码分享

一种基于点云场景分割与改进配准算法的物体位姿估计方法

张瑾贤1, 吴晓峰2, 叶才铭2, 杨吉祥1, 丁汉1   

  1. 1. 华中科技大学数字制造装备与技术国家重点实验室 武汉 430074;
    2. 中国航发南方工业有限公司 株洲 412002
  • 收稿日期:2022-11-05 修回日期:2023-04-15 出版日期:2023-11-20 发布日期:2024-02-19
  • 通讯作者: 杨吉祥(通信作者),男,1987年出生,博士,副教授,博士研究生导师。主要研究方向为机器人和数控加工技术与装备。E-mail:jixiangyang@hust.edu.cn
  • 作者简介:张瑾贤,男,1998年出生。主要研究方向为机器人和三维点云测量。E-mail:jinxian@hust.edu.cn
  • 基金资助:
    国家重点研发计划(2020YFB1710400)、国家自然科学基金(52122512,52188102)和湖北省自然科学基金(2021CFA075)资助项目。

Object Pose Estimation Method Based on Point Cloud Scene Segmentation and Improved Registration

ZHANG Jinxian1, WU Xiaofeng2, YE Caiming2, YANG Jixiang1, DING Han1   

  1. 1. State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074;
    2. Aecc South Industry Company Limited, Zhuzhou 412002
  • Received:2022-11-05 Revised:2023-04-15 Online:2023-11-20 Published:2024-02-19

摘要: 为了解决低分辨率深度相机获取复杂场景下物体精确位姿信息困难的问题,提出一种基于点云场景分割与改进配准算法的物体位姿估计方法。首先,提出采用结构光三维扫描仪来扫描制作目标物体模板,以消除由理论模型直接生成模板所带来的差异性。而后,提出了一种基于两步法的物体分割方式,能够快速准确地完成场景点云中目标物体的分割。最后,提出一种结合法线夹角约束与邻域数约束的关键点提取算法,能够有效提取模板与场景点云中具有大曲率特征且非噪声的关键点,紧接着在关键点处计算 FPFH 特征描述,并基于随机采样一致性完成物体粗配准与初始位姿估计。为提高位姿估计精度,进一步采用带法线夹角约束的改进 ICP 算法,完成物体初始位姿估计的精确修正。通过试验对所提方法进行了验证,对比现有基于点云配准的位姿估计方法,位姿估计误差明显减小,有效证明了所提方法的可行性。

关键词: 位姿估计, 场景分割, 点云配准, ICP算法, 特征约束

Abstract: To solve the difficulty of obtaining accurate position and pose information of objects in complex scenes with low resolution depth camera, an object pose estimation method based on point cloud scene segmentation and improved registration algorithm is proposed. Firstly, a structured light scanning 3D scanner is proposed to make the template of the object, to eliminate the difference caused by the template directly generated by the theoretical model. Then, an object segmentation method based on two-step method is proposed, which can quickly and accurately complete the segmentation of the object in the scene cloud. Finally, a key point extraction algorithm that combines the normal angle constraint and the neighborhood number constraint is proposed, which can effectively extract the key points with large curvature characteristics and non-noise in the template and scene point clouds, and then calculate FPFH description at the key points, and complete object coarse registration and initial pose estimation based on random sampling consistency. To improve the accuracy of pose estimation, an improved ICP algorithm with normal angle constraint is adopted to complete the accurate correction of the initial pose estimation. The proposed method is verified by experiments. Compared with the existing pose estimation methods based on point cloud registration, the error of pose estimation is significantly reduced, which effectively proves the feasibility of the proposed method.

Key words: pose estimation, scene segmentation, point cloud registration, ICP algorithm, feature constraints

中图分类号: