[1] BIAN Xiaolei, LIU Longcheng, YAN Jinying, et al. An open circuit voltage-based model for state-of-health estimation of lithium-ion batteries:Model development and validation[J]. Journal of Power Sources, 2020, 448:227401. [2] HASSAN M U, SAHA S, HAQUE M E, et al. A comprehensive review of battery state of charge estimation techniques[J]. Sustainable Energy Technologies and Assessments, 2022, 54:102801. [3] CUI Hao, REN Dongsheng, YI Mengchao, et al. Operando monitoring of the open circuit voltage during electrolyte filling ensures high performance of lithium-ion batteries[J]. Nano Energy, 2022, 104:107874. [4] 徐保荣,王兴成,张齐,等. 自适应扩展卡尔曼滤波电池荷电状态估算方法[J]. 哈尔滨工业大学学报, 2021, 53(7):92-98. XU Baorong, WANG Xingcheng, ZHANG Qi, et al. Adaptive extended Kalman filter for estimating the charging state of battery[J]. Journal of Harbin Institute of Technology, 2021, 53(7):92-98. [5] 盛国良,翁朝阳,陆宝春. 基于改进型自适应强跟踪卡尔曼滤波的电池SOC估算[J]. 南京理工大学学报, 2020, 44(6):689-695. SHENG Guoliang, WENG Chaoyang, LU Baochun. Battery SOC estimation based on improved adaptive strong tracking Kalman filter[J]. Journal of Nanjing University of Science and Technology, 2020, 44(6):689-695. [6] 高铭琨,徐海亮,吴明铂. 基于等效电路模型的动力电池 SOC估计方法综述[J]. 电气工程学报, 2021, 16(1):90-102. GAO Mingkun, XU Hailiang, WU Mingbo. Review of SOC estimation methods for power battery based on equivalent circuit model[J]. Journal of Electrical Engineering, 2021, 16(1):90-102. [7] 周娟,孙啸,刘凯,等. 联合扩展卡尔曼滤波的滑模观测器SOC估算算法研究[J]. 中国电机工程学报, 2021, 41(2):692-703. ZHOU Juan, SUN Xiao, LIU Kai, et al. Research on the SOC estimation algorithm of combining sliding mode observer with extended Kalman filter[J]. Proceedings of the CSEE, 2021, 41(2):692-703. [8] 谢滟馨,王顺利,史卫豪,等. 一种用于高保真锂电池SOC估计的无迹粒子滤波新方法[J]. 储能科学与技术, 2021, 10(2):722-731. XIE Yanxin, WANG Shunli, SHI Weihao, et al. A new method of unscented particle filter for high-fidelity lithium-ion battery SOC estimation[J]. Energy Storage Science and Technology, 2021, 10(2):722-731. [9] LI Yong, WANG Lifang, LIAO Chenglin, et al. Recursive modeling and online identification of lithium-ion batteries for electric vehicle applications[J]. Science China Technological Sciences, 2014, 57(2):403-413. [10] KHARE N, CHANDRA S, GOVIL R. Statistical modeling of SoH of an automotive battery for online indication[C]//NTELEC 2008- 2008 IEEE 30th International Telecommunications Energy Conference, 2008, 1-7. [11] 李光, 龙吟, 朱浩. 基于PF-RLS的电池组SOC估算[J]. 江苏大学学报(自然科学版), 2020, 41(5):503-508, 534. LI Guang, LONG Yin, ZHU Hao. SOC estimation of battery pack based on PF-RLS[J]. Journal of Jiangsu University (Natural Science Edition), 2020, 41(5):503-508, 534. [12] PLETT G L. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packsPart 1. Background[J]. Journal of Power Sources, 2004, 134:252-261. [13] PLETT G L. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packsPart 2. Modeling and identification[J]. Journal of Power Sources, 2004, 134:262-276. [14] PLETT G L. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs-Part 3. State and parameter estimation[J]. Journal of Power Sources, 2004, 134:277-292. [15] 戴海峰,孙泽昌,魏学哲. 利用双卡尔曼滤波算法估计电动汽车用锂离子动力电池的内部状态[J]. 机械工程学报, 2009, 45(6):95-101. DAI Haifeng, SUN Zechang, WEI Xuezhe. Estimation of internal states of power lithium-ion batteries used on electric vehicles by dual extended Kalman filter[J]. Journal of Mechanical Engineering, 2009, 45(6):95-101. [16] XIONG Rui, HE Hongwen, SUN Fengchun, et al. Evaluation on state of charge estimation of batteries with adaptive extended Kalman filter by experiment approach[J]. IEEE Transactions on Vehicular Technology, 2013, 62(1):108-117. [17] XING Yinjiao, HE Wei, PECHT M, et al. State of charge estimation of lithium-ion batteries using the open-circuit voltage at various ambient temperatures[J]. Applied Energy, 2014, 113:106-115. [18] SHRIVASTAVA P, SOON T K, IDRIS M, et al. Overview of model-based online state-of-charge estimation using Kalman filter family for lithium-ion batteries[J]. Renewable and Sustainable Energy Reviews, 2019, 113:109233. [19] 武龙星,庞辉,晋佳敏,等. 基于电化学模型的锂离子电池荷电状态估计方法综述[J]. 电工技术学报, 2022, 37(7):1703-1725. WU Longxing, PANG Hui, JING Jiamin, et al. A review of SOC estimation methods for lithium-ion batteries based on electrochemical model[J]. Transactions of China Electrotechnical Society, 2022, 37(7):1703-1725. [20] JIANG Haobin, CHEN Xijia, LIU Yifu, et al. Online state-of-charge estimation based on the gas-liquid dynamics model for Li(NiMnCo)O2 battery[J]. Energies, 2021, 14(2):324-342. [21] 程昀,李劼,贾明,等. 锂离子电池多尺度数值模型的应用现状及发展前景[J]. 物理学报, 2015, 64(21):137-152. CHENG Yun, LI Jie, JIA Ming, et al. Application status and future of multi-scale numerical models for lithium ion battery[J]. Acta Physica Sinica, 2015, 64(21):137-152. [22] 康鑫,时玮,陈洪涛. 基于锂离子电池简化电化学模型的参数辨识[J]. 储能科学与技术, 2020, 9(3):969-978. KANG Xin, SHI Wei, CHEN Hongtao, et al. Parameter identification based on simplified electrochemical model of lithium ion battery[J]. Energy Storage Science and Technology, 2020, 9(3):969-978. [23] RODRIGUEZ A, PLETT G L, TRIMBOLI M S. Comparing four model-order reduction techniques, applied to lithium-ion battery-cell internal electrochemical transfer functions[J]. eTransportation, 2019, 1:100009. [24] REIMERS J N. Algorithmic improvements and PDE decoupling, for the simulation of porous electrode cells[J]. Journal of the Electrochemical Society, 2013, 160(6):A811-A812. [25] TORCHIO M, MAGNI L, GOPALUNI R B, et al. LIONSIMBA:A matlab framework based on a finite volume model suitable for Li-ion battery design, simulation, and control[J]. Journal of the Electrochemical Society, 2016, 163(7):A1192-A1205. [26] SEYEDMEHDI H, LIN Changwei, PISCHING S, et al. State-of-health estimation of lithium-ion batteries for electrified vehicles using a reduced-order electrochemical model[J]. Journal of Energy Storage, 2022, 52:104684. [27] GAO Yizhao, LIU Chenghao, CHEN Sun, et al. Development and parameterization of a control-oriented electrochemical model of lithium-ion batteries for battery-management-systems applications[J]. Applied Energy, 2022, 309:118521. [28] XU Xiaodong, TANG Shengjin, REN Huahua, et al. Joint state estimation of lithium-ion batteries combining improved equivalent circuit model with electrochemical mechanism and diffusion process[J]. Journal of Energy Storage, 2022, 56:106135. [29] 汤爱华. 车载锂离子动力电池SOC/SOH估计方法研究[D]. 北京:北京理工大学, 2017. TANG Aihua. Research on SOC/SOH estimation methods of lithium-ion power batteries for electric vehicles[D]. Beijing:Beijing Institute of Technology, 2017. [30] 李涛,程夕明,胡晨华. 锂离子电池电化学降阶模型性能对比[J]. 物理学报, 2021, 70(13):429-440. LI Tao, CHENG Ximing, HU Chenhua. Comparative study of reduced-order electrochemical[J]. Acta Physica Sinica, 2021, 70(13):429-404. [31] CHEN Biao, JIANG Haobin, SUN Huayang, et al. A new gas-liquid dynamics model towards robust state of charge estimation of lithium-ion batteries[J]. The Journal of Energy Storage, 2020, 29:101343. [32] JIANG Haobin, CHEN Biao, LI Huanhuan, et al. State-of-charge estimation of lithium-ion batteries from a gas-liquid dynamics model including the direct temperature input[J]. The Journal of Energy Storage, 2021, 39:102622. [33] CHEN Biao, JIANG Haobin, CHEN Xijia. Robust state-of-charge estimation for lithium-ion batteries based on an improved gas-liquid dynamics model[J]. Energy, 2022, 238:122008. [34] HEMMER P, KAC M, UHLENBECK G. WITHDRAWN:On the van der waals theory of the vapor-liquid equilibrium. III. discussion of the critical region[J]. Mathematical Physics in One Dimension, 1964, 5(1):60-74. [35] 付晓泰,王振平,卢双舫. 气体在水中的溶解机理及溶解度方程[J]. 中国科学(B辑化学), 1996(2):124-130. FU Xiaotai, WANG Zhenping, LU Shuangfang. The dissolution mechanism and solubility equation of gases in water[J]. Science in China. Series B, Chemistry, 1996(2):124-130. [36] 钟佳奇. 车用锂电池复合散热优化设计研究[D]. 济南:山东大学, 2020. ZHONG Jiaqi. Research on the optimization design of coupled heat dissipation of vehicle lithium battery[D]. Jinan:Shandong University, 2020. [37] 潘仲鸣. 基于CFD的车用动力锂电池组散热结构优化研究[D]. 深圳:中国科学院大学(中国科学院深圳先进技术研究院), 2019. PAN Zhongming. Research on the heat dissipation structure optimization for vehicle power lithium battery module based on CFD[D]. Shenzhen:University of Chinese Academy of Sciences (Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences), 2019. [38] 高肖璟. 基于风冷散热的电动汽车电池组电热耦合模型及温度控制研究[D]. 长春:吉林大学, 2019. GAO Xiaojing. A study on electro-thermal coupling model and temperature control of an air-cooled battery pack for electric vehicles[D]. Changchun:Jilin University, 2019. [39] CHEN Kai, WANG Shuangfang, SONG Mengxuan, et al. Configuration optimization of battery pack in parallel air-cooled battery thermal management system using an optimization strategy[J]. Applied Thermal Engineering, 2017, 123:177-186. [40] BERNARDI D, PAWLIKOWSKI E, NEWMAN J. A general energy balance for battery systems[J]. Journal of the electrochemical society, 1985, 132(1):5-13. [41] 梁金华. 纯电动车用磷酸铁锂电池组散热研究[D]. 北京:清华大学, 2012. LIANG Jinhua. Research on the heat dissipation of pure EV's battery pack[D]. Beijing:Tsinghua University, 2012. [42] 王健. 基于热管理的电动汽车动力电池成组设计[D]. 哈尔滨:哈尔滨工业大学, 2013. WANG Jian. Power battery pack forming design based on thermal management for electric vehicles[D]. Harbin:Harbin Institute of Technology, 2013. [43] ZHENG Fangdan, XINF Yinjiao, JIANG Jiuchun, et al. Influence of different open circuit voltage tests on state of charge online estimation for lithium-ion batteries[J]. Applied Energy, 2016, 183:513-525. [44] DONG Guangzhong, WEI Jingwen, CHEN Zonghai, et al. Kalman filter for onboard state of charge estimation and peak power capability analysis of lithium-ion batteries[J]. Journal of Power Sources, 2016, 328:615-626. [45] CHEN Zonghai, SUN Han, DONG Guangzhong, et al. Particle filter-based state-of-charge estimation and remaining-dischargeable-time prediction method for lithium-ion batteries[J]. Journal of Power Sources, 2019, 414:158-166. |