机械工程学报 ›› 2023, Vol. 59 ›› Issue (15): 311-332.doi: 10.3901/JME.2023.15.311
王红1,2,3, 王兵1,2,3, 刘战强1,2,3, 赵金富1,2,3, 宋清华1,2,3
收稿日期:
2022-08-14
修回日期:
2023-03-02
出版日期:
2023-08-05
发布日期:
2023-09-27
通讯作者:
王兵(通信作者),男,1990年出生,博士,教授,博士研究生导师。主要从事难加工材料高质高效切削加工和先进刀具技术研究工作。E-mail:sduwangbing@sdu.edu.cn
作者简介:
王红,女,1995年出生,博士研究生。主要从事难加工材料高质高效切削加工研究工作。E-mail:sduwanghong@mail.sdu.edu.cn;刘战强,男,1969年出生,博士,教授,博士研究生导师。主要从事切削加工理论与刀具技术、功能表面设计制造、加工过程监控系统开发与智能制造等工作。E-mail:melius@sdu.edu.cn
基金资助:
WANG Hong1,2,3, WANG Bing1,2,3, LIU Zhanqiang1,2,3, ZHAO Jinfu1,2,3, SONG Qinghua1,2,3
Received:
2022-08-14
Revised:
2023-03-02
Online:
2023-08-05
Published:
2023-09-27
摘要: 高质高效切削加工是装备制造领域永恒追求的目标,而工件材料切削加工性是决定加工效率和零件加工质量的根本因素。通过对工件材料表层进行改性处理,使被切除层组织结构与热物理力学性能发生定向转变,成为解决难加工材料切除效率低和加工质量差的重要手段,因此难加工材料的表层改性辅助加工技术在近年来也逐步得到关注。在概括钛合金、高温合金以及高强钢等典型难加工材料切削加工性共性特点基础上,综述了表层改性辅助加工工艺研究进展,归纳总结了能量场改性法、活性介质涂覆法和合金化法等改性处理技术对工件材料表层属性的作用机理,阐述了表层改性处理对材料切削加工性的影响规律,指出了当前改性辅助加工对难加工材料切削加工性改善研究存在的问题。最后,对改性辅助高质高效加工未来研究的重点方向进行了探讨和展望。
中图分类号:
王红, 王兵, 刘战强, 赵金富, 宋清华. 表层改性处理改善难加工材料切削加工性的研究进展[J]. 机械工程学报, 2023, 59(15): 311-332.
WANG Hong, WANG Bing, LIU Zhanqiang, ZHAO Jinfu, SONG Qinghua. Research Progress on Machinability Improvement of Difficult-to-machine Materials with Surface Modification Methods[J]. Journal of Mechanical Engineering, 2023, 59(15): 311-332.
[1] 周亦人,沈自才,齐振一,等. 中国航天科技发展对高性能材料的需求[J]. 材料工程,2021,49(11):41-50. ZHOU Yiren,SHEN Zicai,QI Zhenyi,et al. Demand for high performance materials in development of China's aerospace science and technology[J]. Journal of Materials Engineering,2021,49(11):41-50. [2] ZHANG X S,CHEN Y J,HU J L. Recent advances in the development of aerospace materials[J]. Progress in Aerospace Sciences,2018,97:22-34. [3] 郭东明. 高性能零件的性能与几何参数一体化精密加工方法与技术[J]. 中国工程科学,2011,13(10):47-57. GUO Dongming. Function-genometry integrated precision machining methods and technologies for high performance workpieces[J]. Strategic Study of CAE,2011,13(10):47-57. [4] 彭振龙,张翔宇,张德远. 航空航天难加工材料高速超声波动式切削方法[J]. 航空学报,2022,43(4):67-85. PENG Zhenlong,ZHANG Xiangyu,ZHANG Deyuan. High-speed ultrasonic vibration cutting for difficult-to-machine materials in aerospace field[J]. Acta Aeronautica et Astronautica Sinica,2022,43(4):67-85. [5] WANG B,LIU Z Q. Cutting performance of solid ceramic end milling tools in machining hardened AISI H13 steel[J]. International Journal of Refractory Metals & Hard Materials,2016,55:24-32. [6] KATAHIRA K,TAKESUE S,KOMOTORI J,et al. Micromilling characteristics and electrochemically assisted reconditioning of polycrystalline diamond tool surfaces for ultra-precision machining of high-purity SiC[J]. CIRP Annals-Manufacturing Technology,2014,63(1):329-332. [7] KHAN M A,KUMAR A S,KUMARAN S T,et al. Effect of tool wear on machining GFRP and AISI D2 steel using alumina based ceramic cutting tools[J]. Silicon,2019,11(1):153-158. [8] CUI Y X,WANG W S,SHEN B,et al. A study of CVD diamond deposition on cemented carbide ball-end milling tools with high cobalt content using amorphous ceramic interlayers[J]. Diamond and Related Materials,2015,59:21-29. [9] 范其香,林静,王铁钢. 刀具涂层材料的最新研究进 展[J]. 表面技术,2022,51(2):1-19. FAN Qixiang,LIN Jing,WANG Tiegang. The latest research progress of tool coating materials[J]. Surface Technology,2022,51(2):1-19. [10] GRZESIK W,NIESLONY P,HABRAT W,et al. Investigation of tool wear in the turning of Inconel 718 superalloy in terms of process performance and productivity enhancement[J]. Tribology International,2018,118:337-346. [11] 彭锐涛,降皓鉴,唐新姿,等. 定向内冷车刀及其切削性能[J]. 中国机械工程,2019,30(21):2629-2635,2642. PENG Ruitao,JIANG Haojian,TANG Xinzi,et al. Directional internal-cooling tools and their machining performances[J]. China Mechanical Engineering,2019,30(21):2629-2635,2642. [12] MONORANU M,ASHWORTH S,M'SAOUBI R,et al. A comparative study of the effects of milling and abrasive water jet cutting on flexural performance of CFRP[J]. Procedia CIRP,2019,85:277-283. [13] KUGAEVSKII S S,PIZHENKOV E N,PODGORBUNSKIKH V M. Creation of Grooving and Parting Tools with Cooling Channels Manufactured Using Additive Technologies[J]//Key Engineering Materials,2022,910:369-374. [14] MUVUNZI R,DIMITROV D M,MATOPE S,et al. A case study on the design of a hot stamping tool with conformal cooling channels[J]. The International Journal of Advanced Manufacturing Technology,2021,114(5):1833-1846. [15] MALI R,TELSANG M T,GUPTA T V K. Real time tool wear condition monitoring in hard turning of Inconel 718 using sensor fusion system[J]. Materials Today:Proceedings,2017,4(8):8605-8612. [16] KAYA B,OYSU C,ERTUNC H M,et al. A support vector machine-based online tool condition monitoring for milling using sensor fusion and a genetic algorithm[J]. Proceedings of the Institution of Mechanical Engineers Part B Journal of Engineering Manufacture,2012,226(11):1808-1818. [17] ZHAO Y,GUO K,LI J,et al. Investigation on machinability of NiTi shape memory alloys under different cooling conditions[J]. The International Journal of Advanced Manufacturing Technology,2021,116(5):1913-1923. [18] GUNTREDDI B,GHOSH A. High-speed machining of aluminium alloy using vegetable oil based small quantity lubrication[J]. Proceedings of the Institution of Mechanical Engineers Part B Journal of Engineering Manufacture,2020. doi:10.1177/0954405420929787. [19] GUO Y,MANN J B. Control of chip formation and improved chip ejection in drilling with modulation-assisted machining[J]. Journal of Manufacturing Science and Engineering,2020,142(7):1-22. [20] PAN Y,KANG R,DONG Z,et al. On-line prediction of ultrasonic elliptical vibration cutting surface roughness of tungsten heavy alloy based on deep learning[J]. Journal of Intelligent Manufacturing,2022,33(3):675-685. [21] 雷明凯,郭东明. 高性能表面层制造:基于可控表面完整性的精密制造[J]. 机械工程学报,2016,52(17):187-197. LEI Mingkai,GUO Dongming. High-performance surface layer manufacturing:a precision processing method based on controllable surface integrity[J]. Journal of Mechanical Engineering,2016,52(17):187-197. [22] 唐鹏,刘裔源,黄惠毅,等. 稀有元素Er对Al-Si-Fe-Co合金组织与性能的影响[J]. 稀有金属材料与工程,2020,49(10):3528-3535. TANG Peng,LIU Yiyuan,HUANG Huiyi,et al. Effect of rare element Er on microstructure and properties of Al-Si-Fe-Co alloy[J]. Rare Metal Materials and Engineering,2020,49(10):3528-3535. [23] LI G Y,LIU Z Q,WANG B. Microstructural characteristics,deformation behavior and mechanical properties of Inconel 718 treated by Te infiltration[J]. Journal of Alloys and Compounds,2022,892:162211. [24] 王刚,王微,黄仲佳,等. 热处理对TiNbZrMo合金显微组织和力学性能的影响[J]. 稀有金属材料与工程,2017,46(4):1067-1073. WANG Gang,WANG Wei,HANG Zhongjia,et al. Effects of heat treatment on microstructure and mechanical properties of TiNbZrMo alloy[J]. Rare Metal Materials and Engineering,2017,46(4):1067-1073. [25] SCAGLIONE F,CELEGATO F,RIZZI P,et al. A comparison of de-alloying crystalline and amorphous multicomponent Au alloys[J]. Intermetallics,2015,66:82-87. [26] 马文有,韩雅芳,李树索,等. Mo含量对一种镍基单晶高温合金显微组织和持久性能的影响[J]. 金属学报,2006,42(11):1191-1196. MA Wenyou,HAN Yafang,LI Shusuo,et al. Effect of Mo content on the microstructure and stress rupture of a Ni base single crystal superalloy[J]. Acta Metallurgica Sinica,2006,42(11):1191-1196. [27] ZHU D,ZHANG X,DING H. Tool wear characteristics in machining of nickel-based superalloys[J]. International Journal of Machine Tools and Manufacture,2013,64:60-77. [28] 陈明,刘钢,张晓辉,等. 新型低碳硫系易切削钢切削性能试验[J]. 机械工程学报,2007,43(9):161-166. CHEN Ming,LIU Gang,ZHANG Xiaohui,et al. Experiment on machinability of new developed low carbon sulphur free-cutting steel[J]. Journal of Mechanical Engineering,2007,43(9):161-166. [29] LI X,HUANG Z,AN J,et al. Key elements of sulfide modification in the sulfur-based free-cutting steel[C]//ISAEECE 2017.Guangzhou:2nd International Symposium on Advances in Electrical,Electronics and Computer Engineering,2017:196-200. [30] 谢成本. 钛及钛合金铸造[M]. 北京:机械工业出版,2004. XIE Chengben. Titanium and Titanium alloy casting[M]. Beijing:China Machine Press,2004. [31] CEDERGREN S,PETTI G,SJOBERG G. On the influence of work material microstructure on chip formation,cutting forces and acoustic emission when machining Ti-6Al-4V[J]. Procedia CIRP,2013,12:55-60. [32] 项徽清,秦中立,张奇,等. 激光表面改性有机高分子材料的研究进展[J]. 表面技术,2020,49(5):103-111. XIANG Huiqing,QIN Zhongli,ZHANG Qi,et al. A review of laser surface modification on organic polymers[J]. Surface Technology,2020,49(5):103-111. [33] RUPPRECHT A J,ALLEGO E,PALCHESKO R,et al. Functionalization of stainless steel 316L with corrosion resistant polymer films[J]. Thin Solid Films,2021,721:138543. [34] BEKMURZAYEVA A,DUNCANSON W J,AZEVEDO H S,et al. Surface modification of stainless steel for biomedical applications:Revisiting a century-old material[J]. Materials Science & Engineering C Materials for Biological Applications,2018,93:1073-1089. [35] BIJANZAD A,MUNIR T,ABDULHAMID F. Heat-assisted machining of superalloys:a review[J]. The International Journal of Advanced Manufacturing Technology,2022,118(11):3531-3557. [36] LEE Y J,WANG H. Current understanding of surface effects in microcutting[J]. Materials & Design,2020,192:108688. [37] TO S,WANG H,JELENKOVIC E V. Enhancement of the machinability of silicon by hydrogen ion implantation for ultra-precision micro-cutting[J]. International Journal of Machine Tools and Manufacture,2013,74:50-55. [38] 杜劲,刘战强. 材料切削加工性的综合评价方法[J]. 工具技术,2010,44(7):3-6. DU Jin,LIU Zhanqiang. Comprehensive evaluation of machinability of materials[J]. Tool Engineering,2010,44(7):3-6. [39] 沈雪红,张定华,姚倡锋,等. 钛合金切削加工表面完整性形成机制研究进展[J]. 航空材料学报,2021,41(4):1-16. SHEN Xuehong,ZHANG Dinghua,YAO Changfeng,et al. Research progress on formation mechanism of surface integrity in titanium alloy machining[J]. Journal of Aeronautical Materials,2021,41(4):1-16. [40] SHEN X H,ZHANG D H,TAN L. Effects of cutter path orientations on milling force,temperature,and surface integrity when ball end milling of TC17 alloy[J]. Proceedings of the Institution of Mechanical Engineers,Part B:Journal of Engineering Manufacture,2020,235(6-7):1212-1224. [41] SHOKRANI A,DHOKIA V,NEWMAN S T. Environmentally conscious machining of difficult-to-machine materials with regard to cutting fluids[J]. International Journal of Machine Tools and Manufacture,2012,57:83-101. [42] YIN Q A,LIU Z Q,WANG B,et al. Recent progress of machinability and surface integrity for mechanical machining Inconel 718:A review[J]. The International Journal of Advanced Manufacturing Technology,2020,109(1):215-245. [43] TRUESDALE S L,SHIN Y C. Microstructural analysis and machinability improvement of Udimet 720 via cryogenic milling[J]. Machining Science and Technology,2009,13(1):1-19. [44] 刘战强,吕绍瑜. 镍基粉末高温合金切削加工表面白层形成热-力耦合作用机理[J]. 机械工程学报,2014,50(17):186-193. LIU Zhanqiang,LÜ Shaoyu. Thermo-mechanical coupling mechanisms for white layer formation on machined surface of powder metallurgical nickel-based superalloy[J]. Journal of Mechanical Engineering,2014,50(17):186-193. [45] HU X B,QIN X Z,HOU J S,et al. Microstructural characterization of the M23C6 carbide in a long-term aged Ni-based superalloy[J]. Philosophical Magazine Letters,2017,97(2):43-49. [46] PEREIRA J,RODRIGUES P,ABRAO A. The surface integrity of AISI 1010 and AISI 4340 steels subjected to face milling[J]. Journal of the Brazilian Society of Mechanical Sciences & Engineering,2017,39(10):4069-4080. [47] SONG J B,WANG C Y,ZAN L,et al. Investigation on performance of a CVD coated carbide tool in face milling of ultra-high strength steel 30Cr3SiNiMoVA[J]. Materials Science Forum,2014,800-801:440-445. [48] KAMDANI K,ASHAARY I,HASSAN S,et al. The effect of cutting force and tool wear in milling Inconel 718[C]//Journal of Physics Conference Series,2019,1150:012046. [49] SURESH R,BASAVARAJAPPA S,GAITONDE V N,et al. Machinability investigations on hardened AISI 4340 steel using coated carbide insert[J]. International Journal of Refractory Metals and Hard Materials,2012,33:75-86. [50] RAKESH M,DATTA S. Effects of cutting speed on chip characteristics and tool wear mechanisms during dry machining of Inconel 718 using uncoated WC tool[J]. Arabian Journal for Science and Engineering,2019,44(9):7423-7440. [51] ZHANG C,MU A,SHEN Q,et al. Simulation on cutting forces and cutting temperature in broaching of 300 M steel[J]. Thermal Science,2019,23:147-147. [52] AGMELL M,BUSHLYA V,M'SAOUBI R,et al. Investigation of mechanical and thermal loads in PCBN tooling during machining of Inconel 718[J]. The International Journal of Advanced Manufacturing Technology,2020,107(3):1451-1462. [53] KITAGAWA T,KUBO A,MAEKAWA K. Temperature and wear of cutting tools in high-speed machining of Inconel 718 and Ti-6Al-6V-2Sn[J]. Wear,1997,202(2):142-148. [54] HAO Z,FAN Y,LIN J,et al. New observations on wear mechanism of self-reinforced SiAlON ceramic tool in milling of Inconel 718[J]. Archives of Civil and Mechanical Engineering,2017,17(3):467-474. [55] UDDIN M S,PHAM B,SARHAN A,et al. Comparative study between wear of uncoated and TiAlN-coated carbide tools in milling of Ti6Al4V[J]. Advances in Manufacturing,2017,5(1):83-91. [56] ZHANG H P,ZHANG Z S,ZHENG Z Y,et al. Tool wear in high-speed turning ultra-high strength steel under dry and CMQL conditions[J]. Integrated Ferroelectrics,2020,206(1):122-131. [57] Li Y,ZHENG G,CHENG X,et al. Cutting performance evaluation of the coated tools in high-speed milling of AISI 4340 steel[J]. Materials,2019,12(19):3266. [58] FAN Y H,HAO Z P,ZHENG M L,et al. Study of surface quality in machining nickel-based alloy Inconel 718[J]. The International Journal of Advanced Manufacturing Technology,2013,69(9):2659-2667. [59] YANG D,LIU Z. Surface topography analysis and cutting parameters optimization for peripheral milling titanium alloy Ti-6Al-4V[J]. International Journal of Refractory Metals and Hard Materials,2015,51:192-200. [60] VARELA P I,RAKURTY C S,BALAJI A K. Surface integrity in hard machining of 300 M steel:Effect of cutting-edge geometry on machining induced residual stresses[J]. Procedia CIRP,2014,13:288-293. [61] MISHRA R R,SAHOO A K,PANDA A,et al. MQL machining of high strength steel:A case study on surface quality characteristic[J]. Materials Today:Proceedings,2020,26:2616-2618. [62] LIANG X L,LIU Z Q,WANG B. Dynamic recrystallization characterization in Ti-6Al-4V machined surface layer with process-microstructure-property correlations[J]. Applied Surface Science,2020,530:147184. [63] REN X P X,LIU Z Q. Microstructure refinement and work hardening in a machined surface layer induced by turning Inconel 718 super alloy[J]. International Journal of Minerals,Metallurgy,and Materials,2018,25(8):937-949. [64] JOMAA W,SONGMENE V,BOCHER P. An investigation of machining-induced residual stresses and microstructure of induction-hardened AISI 4340 steel[J]. Materials and Manufacturing Processes,2016,31(7):838-844. [65] OOSTHUIZEN G A,CONRADIE P J T,DIMITROV D M,et al. The effect of cutting parameters on surface integrity in milling Ti6Al4V[J]. South African Journal of Industrial Engineering,2016,27(4):115-123. [66] NAVAS V G,GONZALO O,BENGOETXEA I. Effect of cutting parameters in the surface residual stresses generated by turning in AISI 4340 steel[J]. International Journal of Machine Tools and Manufacture,2012,61(4):48-57. [67] SHARMAN A,HUGHES J,RIDGWAY K. The effect of tool nose radius on surface integrity and residual stresses when turning Inconel 718™[J]. Journal of Materials Processing Technology,2015,216:123-132. [68] 张慧萍,张校雷,张洪霞,等. 300M超高强钢车削加工表面质量[J]. 表面技术,2016(2):181-187. ZHANG Huiping,ZHANG Xiaolei,ZHANG Hongxia,et al. Surface quality of high-speed turning 300 M ultrahigh strength steel[J]. Surface Technology,2016(2):181-187. [69] PANDEY K,DATTA S. Hot machining of difficult-to-cut materials:A review[J]. Materials Today:Proceedings,2021,44:2710-2715. [70] SUN S,BRANDT M,DARGUSCH M S. Thermally enhanced machining of hard-to-machine materials-a review[J]. International Journal of Machine Tools and Manufacture,2010,50(8):663-680. [71] SMUROV I Y,OKOROKOV L V. Laser assisted machining[M]. Springer Netherlands,1993. [72] LEE Y H,LEE C M. A study on optimal machining conditions and energy efficiency in plasma assisted machining of Ti-6Al-4V[J]. Materials,2019,12(16):2590. [73] PARIDA A K,MAITY K. Experimental investigation on tool life and chip morphology in hot machining of Monel-400[J]. Engineering Science and Technology,an International Journal,2018,21(3):371-379. [74] 姜峰,言兰,黄阳,等. 磁场辅助加工的研究现状及其发展趋势[J]. 机械工程学报,2016,52(17):1-9. JIANG Feng,YAN Lan,HUANG Yang,et al. Review on magnetic field assisted machining technology[J]. Journal of Mechanical Engineering,2016,52(17):1-9. [75] ISLAM M U,CAMPBELL G. Laser machining of ceramics:A review[J]. Material and Manufacturing Process,1993,8(6):611-630. [76] KIBRIA G,DOLOI B,BHATTACHARYYA B. Investigation and analysis on pulsed Nd:YAG laser micro-turning process of aluminium oxide (Al2O3) ceramic at various laser defocusing conditions[J]. The International Journal of Advanced Manufacturing Technology,2015,76(1):17-27. [77] ELTAWAHNI H A,BENYOUNIS K Y,OLABI A G. High power CO2 laser cutting for advanced materials-review[M]//Reference Module in Materials Science and Materials Engineering. Elsevier BV,2015. [78] AHMED N,DARWISH S,ALAHMARIl A M,et al. Micro-channels by Nd:YAG laser beam machining:fabrication,microstructures,and micro-hardness profiles[J]. The International Journal of Advanced Manufacturing Technology,2016,85(9):1955-1968. [79] CHEN S H,TSAI K T. The study of plasma-assisted machining to Inconel-718[J]. Advances in Mechanical Engineering,2017,9(12):1687814017735789. [80] LACALLE L,SANCHEZ J,LAMIKIZ A,et al. Plasma assisted milling of heat-resistant superalloys[J]. J. Manuf. Sci. Eng.,2004,126(2):274-285. [81] ZHANG T Y,WANG X,WU L T,et al. Principle and experiment of electric hot milling superalloy[J]. Advanced Materials Research,2013,820:180-184. [82] VENKATESH G,CHAKRADHAR D. Influence of thermally assisted machining parameters on the machinability of Inconel 718 superalloy[J]. Silicon,2017,9(6):867-877. [83] BAILI M,WAGNER V,DESSEIN G,et al. An experimental investigation of hot machining with induction to improve Ti-5553 machinability[J]. Applied Mechanics and Materials,2011,62:67-76. [84] KLAMECKI B E. Residual stress reduction by pulsed magnetic treatment[J]. Journal of Materials Processing Technology,2003,141(3):385-394. [85] LESHOCK C E,KIM J N,SHIN Y C. Plasma enhanced machining of Inconel 718:modeling of workpiece temperature with plasma heating and experimental results[J]. International Journal of Machine Tools and Manufacture,2001,41(6):877-897. [86] UDUPA A,VISWANATHAN K,SAEI M,et al. Material-independent mechanochemical effect in the deformation of highly-strain-hardening metals[J]. Physical Review Applied,2018,10(1):014009. [87] KOHN E M. Role of extreme pressure lubricants in boundary lubrication and in metal cutting[J]. Nature,1963,197(487):895-895. [88] REHBINDER P. New physico-chemical phenomena in the deformation and mechanical treatment of solids[J]. Nature,1947,159(4052):866-867. [89] UDUPA A,VISWANATHAN K,DAVIS J M,et al. A mechanochemical route to cutting highly strain-hardening metals[J]. Tribology Letters,2019,67(1):1-12. [90] NICHOLAS M G,OLD C F. Liquid metal embrittlement[J]. Journal of Materials Science,1979,14(1):1-18. [91] YIN Q A,LIU Z Q,WANG B. Machinability improvement of Inconel 718 through mechanochemical and heat transfer effects of coated surface-active thermal conductive mediums[J]. Journal of Alloys and Compounds,2021,876:160186. [92] SHAW M C. On the action of metal cutting fluids at low speeds[J]. Wear,1959,2(3):217-227. [93] KOHN E M. A theory on the role of lubricants in metal cutting at low speeds and in boundary lubrication[J]. Wear,1965,8(1):43-59. [94] USUI E,GUJRAL A,SHAW M C. An experimental study of the action of CCl4 in cutting and other processes involving plastic flow[J]. International Journal of Machine Tool Design and Research,1961,1(3):187-197. [95] BARLOW P L. Rehbinder effect in lubricated metal cutting[J]. Nature,1966,211(5053):1076-1077. [96] CHAUDHARI A,SOH Z Y,WANG H,et al. Rehbinder effect in ultraprecision machining of ductile materials[J]. International Journal of Machine Tools and Manufacture,2018,133:47-60. [97] ATKINS A G. Modelling metal cutting using modern ductile fracture mechanics:Quantitative explanations for some longstanding problems[J]. International Journal of Mechanical Sciences,2003,45(2):373-396. [98] SUGIHARA T,UDUPA A,Viswanathan K,et al. Organic monolayers disrupt plastic flow in metals[J]. Science Advances,2020,6(51):8900. [99] 郭建亭,任维丽,周健. NiAl合金化研究进展[J]. 金属学报,2002,38(6):667-672. GUO Jianting,REN Weili,ZHOU Jian. Progress in research on alloying effects in NiAl intermetallic alloys[J]. Acta Metallurgica Sinica,2002,38(6):667-672. [100] GWAK E J,KIM J Y. Weakened flexural strength of nanocrystalline nanoporous gold by grain refinement[J]. Nano Letters,2016,16(4):2497-2502. [101] EYLON D,FROES F H,YOLTON C F. Method for developing ultrafine microstructures in titanium alloy castings:U.S. Patent 4820360[P]. 1989-04-11. [102] VOGT R G,EYLON D,FROES F H. Method for refining microstructures of titanium ingot metallurgy articles:U.S. Patent 4680063[P]. 1987-07-14. [103] KIMURA K,HAYASHI M,ISHII M,et al. Process for preparing titanium and titanium alloy materials having a fine equiaxed microstructure:U.S. Patent 5108517[P]. 1992-04-28. [104] 危卫华,徐九华,傅玉灿,等. 置氢钛合金TC4的切削加工性研究[J]. 南京航空航天大学学报,2009,41(5):633-638. WEI Weihua,XU Jiuhua,FU Yucan,et al. Machinability of hydrogenating titanium alloy TC4[J]. Journal of Nanjing University of Aeronautics & Astronautics,2009,41(5):633-638. [105] BRIANT C L,MESSMER R P. Electronic effects of sulphur in nickel:A model for grain boundary embrittlement[J]. Philosophical Magazine B,1980,42(4):569-576. [106] LIU W,REN C,HAN H,et al. First-principles study of the effect of phosphorus on nickel grain boundary[J]. Journal of Applied Physics,2014,115(4):043706. [107] JIA L X,WANG Y X,OU X D,et al. Decohesion of Ti3SiC2 induced by He impurities[J]. Materials Letters,2012,83:23-26. [108] LIU W,HAN H,REN C,et al. First-principles study of intergranular embrittlement induced by Te in the Ni Σ 5 grain boundary[J]. Computational Materials Science,2014,88:22-27. [109] LI G Y,LIU Z Q,WANG B,et al. Effect of element Te on alterations of microstructure and mechanical property of nickel-based superalloy Inconel 718 through alloy infiltration[J]. Applied Surface Science,2021,544:148730. [110] MCCUE I,BENN E,GASKEY B,et al. Dealloying and dealloyed materials[J]. Annual Review of Materials Science,2016,46(1):263-286. [111] ERLEBACHER J,AZIZ M J,KARMA A,et al. Evolution of nanoporosity in dealloying[J]. Nature,2001,410(6827):450-453. [112] ZHANG Z,WANG Y,QI Z,et al. Generalized fabrication of nanoporous metals(Au,Pd,Pt,Ag,and Cu)through chemical dealloying[J]. Journal of Physical Chemistry C,2009,113(29):12629-12636. [113] HU W K,SHAO J C,WANG S G,et al. Evolution of a bicontinuous structure in peritectic melting:The simplest form of dealloying[J]. Physical Review Materials,2019,3(11):113601. [114] MCCUE I,GASKEY B,GESLIN P A,et al. Kinetics and morphological evolution of liquid metal dealloying[J]. Acta Materialia,2016,115:10-23. [115] THANDRA S K,CHOUDHURY S K. Effect of cutting parameters on cutting force,surface finish and tool wear in hot machining[J]. International Journal of Machining & Machinability of Materials,2010,7(3-4):260-273. [116] UDUPA A,VISWANATHAN K,SAEI M,et al. Influencing surface plastic flow in metals using common chemical media[J]. Philosophical Magazine Letters,2019,99(1):1-11. [117] ZHANG J,LEE Y J,WANG H. Mechanochemical effect on the microstructure and mechanical properties in ultraprecision machining of AA6061 alloy[J]. Journal of Materials Science & Technology,2021,69:228-238. [118] KHANI S,FARAHNAKIAN M,RAZFAR M R. Experimental study on hybrid cryogenic and plasma-enhanced turning of 17-4PH stainless steel[J]. Materials and Manufacturing Processes,2015,30(7):868-874. [119] VENKATESAN K,KANUBHAI J,RAVAL G V,et al. A study on prediction of forces and cutting temperature in laser-assisted machining of Inconel 718 alloy using numerical approach[J]. Materials Today:Proceedings,2018,5(5):12339-12348. [120] YEUNG H,VISWANATHAN K,UDUPA A,et al. Sinuous flow in cutting of metals[J]. Physical Review Applied,2017,8(5):054044. [121] HAKAMADA M,MABUCHI M. Fabrication,microstructure,and properties of nanoporous Pd,Ni,and their alloys by dealloying[J]. Critical Reviews in Solid State and Materials Sciences,2013,38(4):262-285. [122] 王兵,刘战强. 材料动态性能对高速切削切屑形成的影响规律[J]. 中国科学(技术科学),2016,46(1):1-19. WANG Bing,LIU Zhanqiang. Effect of material dynamic properties on the chip formation mechanism during high speed machining[J]. Scientia Sinica (Technologica),2016,46(1):1-19. [123] MANSORI M E,MKADDEM A. Surface plastic deformation in dry cutting at magnetically assisted machining[J]. Surface & Coatings Technology,2007,202(4):1118-1122. [124] PARIDA A K,MAITY K. Comparison the machinability of Inconel 718,Inconel 625 and Monel 400 in hot turning operation[J]. Engineering Science and Technology,an International Journal,2018,21(3):364-370. [125] CHAUDHARI A,WANG H. Effect of surface-active media on chip formation in micromachining[J]. Journal of Materials Processing Technology,2019,271:325-335. [126] HEALY C,KOCH S,SIEMERS C,et al. Shear melting and high temperature embrittlement:theory and application to machining titanium[J]. Physical Review Letters,2015,114(16):165501. [127] SIEMERS C,LAUKART J,ZAHRA B,et al. Development of advanced and free-machining titanium alloys by micrometer-size particle distribution[J]. Materials Science Forum,2011,690:262-265. [128] LAUKART J,SIEMERS C,ROSLER J. Microstructure-properties relationship of a new lanthanum containing Ti6Al4V alloy[J]. Proceedings of the AMMT,2009,1:425-434. [129] ZAHRA B,SIEMERS C,ROKICKI P,et al. Modification of alloy 625 by addition of second-phase particle[C]//Proceedings of the COM2012,Niagara Falls,Ontario,Canada,2012. [130] KHATIR F A,SADEGHI M H,AKAR S. Investigation of surface roughness in laser-assisted hard turning of AISI 4340[J]. Materials Today:Proceedings,2021,38:3085-3090. [131] GERMAIN G,MOREL F,LEBRUN J L,et al. Machinability and surface integrity for a bearing steel and a titanium alloy in laser assisted machining[J]. Lasers in Engineering,2007,17(5-6):329-344. [132] DANDEKAR C R,SHIN Y C,BARNES J. Machinability improvement of titanium alloy (Ti-6Al-4V) via LAM and hybrid machining[J]. International Journal of Machine Tools and Manufacture,2010,50(2):174-182. [133] YEUNG H,VISWANATHAN K,COMPTON W D,et al. Sinuous flow in metals[J]. Proceedings of the National Academy of Sciences,2015,112(32):9828-9832. [134] UDUPA A,SUGIHARA T,VISWANATHAN K,et al. Altering the stability of surface plastic flow via mechanochemical effects[J]. Physical Review Applied,2019,11(1):014021. [135] HUSSAIN M S,SIEMERS C,ROSLER J. Development of a free-machining (α+β) titanium alloy based on Ti-6Al-2Sn-4Zr-6Mo[J]. Materials and Manufacturing Processes,2013,28(5):545-549. [136] LIU J W,YUE T M,GUO Z N. Grinding-aided electrochemical discharge machining of particulate reinforced metal matrix composites[J]. The International Journal of Advanced Manufacturing Technology,2013,68(9):2349-2357. [137] 罗欢,张定华,罗明. 航空难加工材料切削刀具磨损与剩余寿命预测研究进展[J]. 中国机械工程,2021,32(22):2647-2666. LUO Huan,ZHANG Dinghua,LUO Ming. Tool wear and remaining useful life estimation of difficult-to-machine aerospace alloys:a review[J]. China Mechanical Engineering,2021,32(22):2647-2666. [138] HAKAMI F,PRAMANIK A,BASAK A K. Tool wear and surface quality of metal matrix composites due to machining:a review[J]. Proceedings of the Institution of Mechanical Engineers,Part B:Journal of Engineering Manufacture,2017,231(5):739-752. [139] RAO T B. Reliability analysis of the cutting tool in plasma-assisted turning and prediction of machining characteristics[J]. Australian Journal of Mechanical Engineering,2022,20(4):1020-1034. [140] BRECHER C,EMONTS M,ROSEN C J,et al. Laser-assisted milling of advanced materials[C]//Physics Procedia,May 23-26,2011,Munich,Germany,599-606. |
[1] | 温秋玲, 杨野, 黄辉, 黄国钦, 胡中伟, 陈金鸿, 汪晖, 吴贤. 激光复合加工硬脆性材料研究进展综述[J]. 机械工程学报, 2024, 60(9): 168-188. |
[2] | 李晗, 章程, 陈杰, 安庆龙, 陈明. SiCf/SiC复合材料激光烧蚀辅助铣削材料去除机理与加工表面质量评价[J]. 机械工程学报, 2024, 60(9): 206-217. |
[3] | 陈佳佳, 刘松炎, 杨勇, 袁冬冬, 张立勇, 傅玉灿, 钱宁. 纳米流体热管砂轮成型磨削钛合金换热性能评价[J]. 机械工程学报, 2024, 60(15): 407-419. |
[4] | 都建标, 张强, 宗文俊. 硬脆及黑色金属材料的单点金刚石车削加工技术综述[J]. 机械工程学报, 2023, 59(7): 156-175. |
[5] | 贾振元, 付饶, 王福吉. 碳纤维复合材料构件加工技术进展[J]. 机械工程学报, 2023, 59(19): 348-374. |
[6] | 潘鑫, 彭瑞轩, 张皓宇, 吴海琦, 高金吉. 高端机械装备新型电磁式自动平衡系统研究[J]. 机械工程学报, 2023, 59(18): 3-12. |
[7] | 孙富建, 肖罡, 蒋志贤, 李时春, 万可谦. 去应力退火工艺对锻造TA7钛合金切削性能的影响[J]. 机械工程学报, 2022, 58(13): 298-306. |
[8] | 陈佳佳, 傅玉灿, 钱宁, 姜华飞. 成型面干磨削用旋转热管砂轮换热性能研究[J]. 机械工程学报, 2021, 57(3): 267-276. |
[9] | 王永青, 韩灵生, 刘阔, 刘海波, 班仔优, 郭东明. 超低温加工机床的液氮冷却介质可靠传输与精准调控[J]. 机械工程学报, 2020, 56(1): 187-195. |
[10] | 林志树, 黄辉, 郑生龙. 多线往复式线锯切割中单位长度材料去除量的理论分析与试验研究[J]. 机械工程学报, 2018, 54(13): 208-214. |
[11] | 韩振宇, 金鸿宇, 付云忠, 富宏亚. 基于有限元数值模型和进给速度优化的薄壁件侧铣变形在线控制[J]. 机械工程学报, 2017, 53(21): 190-199. |
[12] | 南成根, 吴丹, 马信国, 陈恳. 碳纤维复合材料/钛合金叠层钻孔质量研究[J]. 机械工程学报, 2016, 52(11): 177-185. |
[13] | 张金;黄筱调;彭琪;陆慧慧. 铣齿断续切削机理的研究[J]. , 2011, 47(13): 186-192. |
[14] | 吴高阳;张之敬;王志芳;付伟. 高频群脉冲电化学加工在微制造中的应用[J]. , 2006, 42(增刊): 60-64. |
[15] | 龙震海;王西彬;王好臣. 难加工材料高速切削过程中切削力的非线性特征规律析因研究[J]. , 2006, 42(1): 30-34. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||